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IP network technology cannot continue on an ever-increasing course of technological complexity and yet
require the kind of human intervention that is necessary today for network management. Networks must
be self-managing. This can only be done by a system of measurement that copes with the dynamics of
packet movement. This system must process the packet-level measurements into variables that characterize
network behaviors, which then form the basis for control algorithms that react to the variables. Such packet-
level measurements can lead to characterization and control at the application layer, at the transport layer,
at the network layer (including overlay networking), and in some cases at the link layer. This research
will use tools of statistics, data mining and machine learning to explore packet-level measurement for self-
management.

The current dominant measurement framework on IP networks, SNMP, is not adequate to the task because
it does not allow the determination of network time dynamics.

We studied data that allows the determination of time dynamics — time-stamping the arrivals of packets
at network nodes and recording header contents. The research used methods of statistics, data mining,
and machine learning to (1) determine network variables derivable from the measurements that characterize
network behavior; (2) develop models of the critical network variables that characterize performance, usage,
security, and early onset of problems; and (3) develop automated control methods based on the variables.
In addition, certain models that we developed can provide traffic generation in network simulation systems
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1    Overview:  Introduction 
 
IP network technology cannot continue on an ever-increasing course o technological complexity 
and yet require the kind of human intervention that is necessary today for network management. 
Networks must be self-managing. This can only be done by a system of measurement that copes 
with the dynamics of packet movement.  This system must process the packet-level 
measurements into variables that characterize network behaviors, which then form the basis for 
control algorithms that react to the variables.  Such packet-level measurements can lead to 
characterization and control at the application layer, at the transport layer, at the network layer 
(including overlay networking), and in some cases at the link layer.  This research will use tools 
of statistics, data mining and machine learning to explore packet-level measurement for self-
management. 
 
The current dominant measurement framework on IP networks, SNMP, is not adequate to the 
task because it does not allow the determination of network time dynamics. We studied data that 
allows the determination of time dynamics—time-stamping the arrivals of packets at network 
nodes and recording header contents.  The research used methods of statistics, data mining, and 
machine learning to: 
   
 (1)  determine network variables derivable from the measurements that characterize 
network behavior;  
 
 (2)  develop models of the critical network variables that characterize performance, 
usage, security, and early onset of problems; and  
 
 (3)  develop automated control methods based on the variables. In addition, certain 
models that we developed can provide traffic generation in network simulation systems 
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that can be used for further study of control.

Our project involved the study of previously collected packet header data on IP network links, as well as
providing for collection of new data.

The statistics, data mining, and machine learning was carried out using the S-Net software system for IP
network packet-level data. S-Net, the most comprehensive environment for packet header study available
today, was developed with support, in part, by DARPA under federal contract No. F30602-00-C-0034.

This report describes the work done under the above federal contract as well as previous work done under
federal contract No. F30602-02-2-C0093 awarded to Bell Labs because the work under the new contract
was a continuation of the work under the previous contract. In a later section of this final report the part of
the work done under the new contract is described.

2 Overview: Main Elements of the Approach

Assembled a database of packet header data. Partnered with network operators who were a source not only
of data, but provided knowledge of the critical network operations issues. Partnered with network equip-
ment manufacturers to determine feasiblity of different packet-level measurement frameworks. Statistical
analysis, data mining, and machine learning used to study network behavior using the S-Net system for
packet-header analysis and visualization. Developed models for the measurements. Developed algorithms
for self-management based on the measurement scenario, models, and the learned network behavior.

3 Overview: Deliverables

1. Management and administration: As part of the conventional DARPA monthly reporting process,
project management deliverables included the status of the effort, progress toward accomplishment of con-
tract requirements, and monitoring funding use rates (spreadsheet format for financial reports with actual
monthly and cumulative expenditures compared with the programmed budget). We also made oral presen-
tations at two DARPA PI meetings.

2. Research: Results on measurement frameworks, network characterization, models, variables that char-
acterize network behavior, and self-managing control methods based on the variables, conveyed through
viewgraphs and written documents.

4 Overview: Statement of Work

We collaborated and cooperated with the other program contractors on the planning, design, implementation
and demonstration of new technologies described within this proposal.

Over the course of execution of the contract resulting from this proposal, we maintained effective com-
munications and active exchange with all other traffic modeling program researchers in order to facili-
tate free-flowing information transfer and integration with other investigators. We actively exchanged re-
search results with the larger research community through journal publications and oral presentations at
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national/international seminars and meetings.

We documented technical work accomplished and information gained during performance of this acquisi-
tion in the form of monthly status and special technical reports and this final report. These reports included
significant observations, problems, positive results, negative results, and design criteria. These reports doc-
umented procedures followed, processes developed, lessons learned, and other useful information. The
reports documented the details of all technical work to permit full understanding of the techniques and
procedures used in evolving technology or processes developed.

Task 1: Packet-Level Measurement

We assembled a database of packet-level measurements consisting of packet header fields and time-stamps.
The measurements were passive. We obtained existing measurements and deployed devices to collect more
data.

We studied best-effort traffic streams, the dominant traffic type on IP networks today, as well as voice over
IP traffic. Increasingly, today’s voice traffic is moving from the circuit-switched telephone networks to IP
networks. Many service providers now have architectures in which calls start and end on the circuit-switched
networks, but are carried as IP network packet traffic over the IP network core. Very little measurement of
VoIP traffic has been carried out, a prerequisite to characterization and control. We obtained such data as
part of our study. For best-effort traffic the headers were IP and TCP (or UDP). For voice over IP traffic, the
headers were IP, UDP, and RTP.

Task 2: Statistical Analysis, Data Mining, and Machine Learning for Network Characterization
and Modeling

The data from our measurement plans were studied extensively in the S-Net environment. We determined
variables that characterize network behavior and developed models for network traffic. The models can
provide traffic generation for network simulators.

Task 3: Automated Control

We developed an automated control method for network self-management based on the above variables for
network characterization. The performance of the control methods were studied through simulation methods
and analytical mathematical methods.

5 Overview: Key Personnel

1. Supported by Grant.

William S. Cleveland, Professor of Statistics and Professor of Computer Science, Purdue University

Michael Zhu, Assistant Professor of Statistics, Purdue University

Hui Chen, Graduate Student, Statistics Department, Purdue University

2. Substantial work was carried out by personnel not supported by the grant.

Bowei Xi, Assistant Professor of Statistics, Purdue University
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Douglas Crabill, System Administrator, Statistics Department, Purdue University

Scott Ballew, Lead Network Administrator, Information Technology, Purdue University

Joerg Micheel, Head, Passive Measurement, National Laboratory for Applied Network Research

Jin Cao, Member of Technical Staff, Bell Labs

Thomas Telkamp, Director of Research and Advanced Development, Global Crossing
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6 Summary of Technical Results: Data Collection

6.1 VoIP Collection

We deployed a monitor on a 100-megabit VoIP Ethernet link on the Global Crossing Network. The link
carries VoIP traffic in two directions between a Sonus gateway and a first router on the GBLX IP network.
The hardware is a 100-mbps Ethernet DAG network card that carries out measurement on the card and can
measure at full line speed to provide highly accurate time stamps. The DAG card timestamps each packet
and captures the IP/UDP/RTP headers. We collected data for 48 hours.

In addition, we obtained call detail records for each call during the first 24 hours of the packet trace. The
detail records let us see unequivocally the caller and called directions, the destinations of the calls, and
categories of the nature of the call terminations. The call detail records provide information that aid greatly
the analysis of the packet traces.

6.2 Best-Effort Collection

We obtained a monitor from the National Laboratory for Applied Network Research (NLANR) for packet
trace collection on the 1 gbps link that carries both directions of all traffic between the Purdue University
campus and the rest of the Internet. The high-end monitor is a linux box with a monitor operating system
together with a light PC in the box that can reboot the monitor operating system and allow increased remote
maintenance. The box also contains a 1-gbps DAG card that does timestamping and packet header capture.
Joerg Micheel of NLANR flew to the West Lafayette campus to help Scott Ballew and Doug Crabill in the
installation. By agreeing to become part of the NLANR measurement program, which means we allow data
collection in part for the NLANR database, the box and travel for Micheel was paid for by the NSF grant
that supports the NLANR program.

6.3 Database from Previous Collection Efforts

In addition, we built a database of best effort packet traces from 6 Internet links. This live stream database
consists of 349 streams, 90 sec or 5 min in duration, from 6 links that we name BELL, NZIX, AIX1, AIX2,
MFN1, and MFN2. The measured streams have negligible delay on the link input router. The mean number
of simultaneous active connections, c, ranges from 49 connections to 18,976 connections. The traffic bit
rate, τ , ranges from 1.00 megabits/sec to 348 megabits/sec.

BELL is a 100 megabit/sec link in Murray Hill, NJ, USA connecting a Bell Labs local network of about
3000 hosts to the rest of the Internet. The transmission is half-duplex, so both directions, in and out, are
multiplexed and carried on the same link, and a stream is the multiplexing of both directions; but to keep
the variable c commensurate for all of the six links, the two directions for each connection is counted as
two. In this presentation we use 195 BELL traces, each 5 min in length. NZIX is the 100 megabit/sec
New Zealand Internet exchange hosted by the ITS department at the University of Waikato, Hamilton, New
Zealand, that served as a peering point among a number of major New Zealand Internet Service Providers
at the time of data collection. All arriving packets from the input/output ports on the switch are mirrored,
multiplexed, and sent to a port where they are measured. Because all connections have two directions at the
exchange, each connection counts 2 as for BELL. In this presentation we use 84 NZIX traces, each 5 min in
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length. AIX1 and AIX2 are two separate 622 megabit/sec OC12 packet-over-sonet links, each carrying one
direction of the traffic between NASA Ames and the MAE-West Internet exchange. In this presentation we
use 23 AIX1 and 23 AIX2 traces, each 90 sec in length. AIX1 and AIX2 streams were collected as part of
a project at the National Laboratory for Applied Network Research where the data are collected in blocks
of 90 sec. MFN1 and MFN2 are two separate 2.5 gigabit/sec OC48 packet-over-sonet links on the network
of the service provider Metropolitan Fiber Network; each link carries one direction of traffic between San
Jose, California, USA and Seattle, Washington, USA.

We also downloaded from NLANR data collected on the OC3 link that connects the University of Leipzig
network to the rest of the Internet.

7 Summary of Technical Results: Statistical Analysis, Data Mining, and
Machine Learning for Network Characterization and Modeling

7.1 Algorithms for Data Processing and Strategies of Analysis

We purchased and installed a high-end two-processor linux box for analysis, learning, mining, and modeling
of the trace data. We installed the S-Net system for graphics and data analysis on the box.

Algorithms were written in C, Perl, and the S language for graphics and data analysis to process the VoIP
measurements. The algorithms represent a a dataflow that progresses from raw packet trace files, to primary
and secondary UNIX flatfile databases, and then to S objects. Our analysis is carried out within the S
environment to allow comprehensive study.

An important part of the strategy for study is time blocking. We broke the trace and CDR data into time
blocks, and applied the same analysis to all blocks. We used 5 minute blocks to guarantee stationarity of
traffic processes within each interval and to create object sizes that were not to large for efficient computa-
tion.

7.2 Analysis for VoIP

We used tools of statistical analysis, data mining, and machine learning to study the characteristics of the
VoIP packet trace data. Most important in this exploratory, or first-study phase, were a host of visualization
tools.

We discovered that there were a very large number of packet level calls with no CDR records. They are all
very short. We studied their characteristics to see if they had anomalous behavior. They spread out across
time and space in proportion to the calls with CDR records. We concluded that certain calls short enough
not to generate revenue are not saved in the CDR records.

The study consisted of a wide range of topics involving the VoIP traffic characteristics and the quality
performance of the Global Crossing system

• call arrival process, intensity and detailed statistical behavior

• call characteristics such as numbers of attempts (without connection) and connections, call durations,
and detailed behavior of packet-level characteristics during ringing period vs. during talking period
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• packet jitter

• aggregate packet traffic statistical properties of inter-arrival times and packet counts in 20 ms intervals

• silence suppression

A number of results came from our analysis.

• call inter-arrivals have to a very good approximation an exponential marginal distribution

• the call inter-arrivals have a small amount of short-term positive autocorrelation

• the call durations have a Pareto distribution, which breaks with the past exponential behavior, caused
because today’s call contain faxes and computer logins, not just the voice conversations of the past

• a very large fraction of calls are call attempts

• patterns in the ringing make us believe we can develop a classification algorithm for determining the
ringing period

• the level of jitter is very low, about ±150µsec.

• the packet arrival process is long-range dependent, caused by the Pareto marginal distribution of the
call durations; these statistical properties play an important role in the automated control rules for
bandwidth allocation that we are developing.

7.3 FSD Models for Best-Effort Traffic

The statistical properties of best-effort traffic, the packet arrival process, with its long-range dependence,
has not reached a consensus with different camps arguing for different views.

Almost all analysis in the past has consisted of the study of counts of packet arrivals in a fixed interval of
time such as 1ms or 10 ms. This is not sufficient to understand the arrival process because moving to a
count is an information reduction method to simplify analysis. Instead, we studied and modeled all of the
information, the packet arrival times.

We developed a new class of models, fractional sum-difference (FSD) models, for the inter-arrival times.
The FSD models, which are non-Gaussian and long-range dependent, provide excellent fits to the inter-
arrivals. We carried out extensive validation to demonstrate this. Our models provide a bridge between
the different camps, explaining and integrating results on multifractal modeling, long-range dependence,
fractional Brownian motion, and convergence to Poisson processes.

In addition, our models can be used for open-loop generation of background traffic in network simulators.
This represents the first such generation that properly recreates the properties of real traffic.

Suppose xv for v = 1, 2, . . . is a stationary time series with marginal cumulative distribution function
F (x;φ) where φ is a vector of unknown parameters. Let x∗v = H(xv;φ) be a transformation of xv such that
the marginal distribution of x∗v is normal with mean 0 and variance 1. We have H(xv;φ) = G−1(F (x;φ)),
where G(z) is the cumulative distribution function of a normal random variable with mean 0 and variance
1. Next we suppose x∗v is a Gaussian time series and call x∗v the “Gaussian image” of xv.

Suppose x∗v has the following form:

x∗v =
√

1 − θ sv +
√
θ nv,
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where sv and nv are independent of one another and each has mean 0 and variance 1. nv is Gaussian white
noise, that is, an independent time series. sv is a Gaussian fractional ARIMA (Hosking 1981)

(I −B)dsv = εv + εu−1

where Bsv = su−1, 0 < d < 0.5, and εv is Gaussian white noise with mean 0 and variance

σ2
ε =

(1 − d)Γ2(1 − d)

2Γ(1 − 2d)
.

xv is a fractional sum-difference (FSD) time series. Its Gaussian image, x∗v, has two components.
√

1 − θsv

is the long-range-dependent, or lrd, component; its variance is 1 − θ.
√
θ is the white-noise component; its

variance is θ.

Let px∗(f) be the power spectrum of the x∗v. Then

px∗(f) = (1 − θ)σ2
ε

4 cos2(πf)
(

4 sin2(πf)
)d

+ θ

for 0 ≤ f ≤ 0.5. As f → 0.5, px∗(f) decreases monotonically to θ. As f → 0, px∗(f) goes to infinity like
sin−2d(πf) ∼ f−2d, one outcome of long-range dependence. For nonnegative integer lags k, let rx∗(k),
rs(k), and rn(k) be the autocovariance functions of x∗v, sv, and nv, respectively. Because the three series
have variance 1, the autocovariance functions are also the autocorrelation functions. rs(k) is positive and
falls off like k2d−1 as k increases, another outcome of long-range dependence. For k > 0, rn(k) = 0 and

rx∗(k) = (1 − θ)rs(k).

As θ → 1, x∗v goes to white noise: px∗(f) → 1 and rx∗(k) → 0 for k > 0. The change in the autocovariance
function and power spectrum are instructive. As θ gets closer to 1, the rise of px∗(f) near f = 0 is always
to order f−2d, and the rate of decay of rx∗(k) for large k is always k2d−1; but the ascent of px∗(f) at the
origin begins closer and closer to f = 0 and the rx∗(k) get uniformly smaller by the multiplicative factor
1 − θ.

We model the marginal distribution of tv by a Weibull with shape λ and scale α, a family with two unknown
parameters. Estimates of λ are almost always less than 1. The Weibull provides an excellent approximation
of the sample marginal distribution of the tv except that the smallest 3% to 5% of the sample distribution is
truncated to a nearly constant value due to certain network transmission properties.

The marginal distribution of qv is modeled as follows. While packets less than 40 bytes can occur, it is
sufficiently rare that we ignore this and suppose 40 ≤ qv ≤ 1500. First, we provide for A atoms at sizes
φ

(s)
1 . . . φ

(s)
A such as 40 bytes, 512 bytes, 576 bytes, and 1500 bytes that are commonly occurring sizes; the

atom probabilities are φ(a)
1 . . . φ

(a)
A . For the remaining sizes, we divided the interval [40, 1500] bytes into

C sub-intervals using C − 1 distinct break points with values that are greater than 40 bytes and less than
1500 bytes, φ(b)

1 , . . . φ
(b)
C−1. For each of the C sub-intervals, the size distribution has an equal probability

for the remaining sizes (excluding the atoms) in the sub-interval; the total probabilities for the sub-intervals
are φ(i)

1 , . . . , φ
(i)
C . Typically, with just 3 atoms at 40 bytes, 576 bytes, and 1500 bytes, and with just 2 break

points at 50 bytes and 200 bytes, we get an excellent approximation of the marginal distribution.

The transformed time series t∗v and q∗v appear to be quite close to Gaussian processes. Some small amount
of non-Gaussian behavior is still present but it is minor. The autocorrelation structure of these Gaussian
images are very well fitted by the FSD autocorrelation structure.
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The parameters of the FSD model are the following:

• qv marginal distribution: A atom probabilities φ(a)
i at A sizes φ(s)

i ; C − 1 break points φ(b)
i and C

sub-interval probabilities φ(i)
i

• tv marginal distribution: shape λ and scale α

• q∗v time dependence: fractional difference coefficient d(q) and white-noise variance θ(q)

• t∗v time dependence: fractional difference coefficient d(t) and white-noise variance θ(t).

We found that the d(q) and d(t) do not depend on c; this is based on empirical study, and it is supported
by theory. The estimated values are 0.410 and 0.411, respectively. We take the value of each of these two
parameters to be 0.41. We found that as c increases, estimates of λ, θ(q), and θ(t) all tend toward 1. This
means the tv tend to a independent exponentials, a Poisson process and the qv tend toward independence. In
other words, the statistical models account for the change in the tv and qv and c increases that was discussed
earlier. We estimated these three parameters and α by partial likelihood methods with d(q) and d(t) fixed to
0.41. The marginal distribution of qv on a given link does not change with c, but it does change from link
to link. To generate traffic, we must specify the atom and sub-interval probabilities. This provides a mean
packet size µ(q), measured in bits/packet.

8 Automated Control: Bandwidth Estimation for Best-Effort Traffic

8.1 Problem Formulation

Suppose the packet stream — packet arrival times and sizes — arriving for transmission on an Internet link
is best-effort traffic with bit rate τ bits/sec and number of simultaneous active connections, c. Suppose the
link input buffer is large enough that packet loss is negligible. Our goal is to estimate the quality-of-service
(QoS) bandwidth β in bits/sec, or equivalently, the QoS utilization u = τ/β, that satisfies QoS criteria for
the packet queueing delay in the link input buffer. The criteria are a delay, δ sec, and the probability, ω, that
the delay for a packet exceeds δ.

8.2 Other Work on the Problem

There is a wide literature on the bandwidth estimation problem. Much of it is theoretical — mathematical
results that derive properties of queueing systems. A smaller literature is empirical in nature, based on
simulations with packet stream inputs from measurements on live links or from models for traffic. The
classical Erlang Delay Formula provides a simple formula that can be used for estimation of traffic streams
that in theory have Poisson arrivals and i.i.d. exponential sizes. Best-effort traffic is much more complex, it
is nonlinear and long-range dependent, and there has been to date no simple, validated formula for it.

8.3 Principal Result: The Best-Effort Delay Model

The principal result of this report is a statistical model that provides a simple, validated formula for the
estimation of bandwidth for best-effort traffic in the same way that the Erlang Delay Formula does for the
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 Poisson-exponential case. The model has been validated through extensive empirical study and through
consistency with certain theoretical properties of queueing.

The model consists of the Best-Effort Delay Formula plus random variation:

logit2(u) = o+ oc log2(c) + oτδ log2(τδ) + oω(− log2(− log2(ω))) + ψ.

ψ is a random error variable with mean 0 and median absolute deviation mδ(ψ), which depends on δ; log2

is the log base 2; and logit2(u) = log2(u/(1 − u)). The distribution of 0.691ψ/mδ(ψ) is a t-distribution
with 15 degrees of freedom. Estimates of the coefficients of the model are

ô = −8.933 ôc = 0.420 ôτδ = 0.444 ôω = 0.893.

mδ(ψ) is modeled as a function of δ: log2(mδ(ψ)) is a linear function of log2(δ) plus random variation.
The estimate of the intercept of the line is –0.481, the estimate of the linear coefficient of the line is 0.166,
and the estimate of the standard error is 0.189. The bit rate τ is equal to cγb where γb is the connection bit
rate in bits/sec/connection. So the Best-Effort Delay Formula can also be written as

logit2(u) = o+ (oc + oτδ) log2(c) + oτδ log2(γbδ) + oω(− log2(− log2(ω))).

In this form we see the action of the amount of multiplexing of connections as measured by c, and the end-
to-end connection speed as measured by γb. An increase in either results in an increase in the utilization of
a link.

The Best-Effort Delay Model is used to estimate the bandwidth required to carry best-effort traffic given δ,
ω, τ , and c. The QoS logit utilization is estimated by

ˆ̀= −8.933 + 0.420 log2(c) + .444 log2(τδ) + 0.893(− log2(− log2(ω))),

so the QoS utilization is estimated by

û =
2

ˆ̀

1 + 2ˆ̀
.

The corresponding estimated bandwidth is τ/û. For such an estimate there is a 50% chance of being too
large and a 50% chance of being too small. We might however, use a more conservative estimate that
provides a much smaller chance of too little bandwidth. Let

m̂δ(ψ) = 2−0.481+0.166 log2(δ)

be the estimate of m(δ). Let t15(p) be the lower 100p% percentage point of a t-distribution with 15 degrees
of freedom, where p is small, say 0.05. Let

ˆ̀(p) = ˆ̀− m̂(δ)t15(p)/0.691

Then

û(p) =
2

ˆ̀(p)

1 + 2ˆ̀(p)
,

is a conservative utilization estimate, the lower limit of a 100p% tolerance interval for the QoS utilization.
The corresponding estimated bandwidth is τ/û(p).
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8.4 Methods

The Best-Effort Delay Model was built, in part, from queueing theory. Certain predictor variables were
suggested by the Erlang Delay Formula. Theory prescribes certain behavior as τ , c, or γb increase, resulting
in rate gains, multiplexing gains, or fast-forward invariance, and the model was constructed to reproduce the
behavior.

The Best-Effort Delay Model was built, in part, from results of queueing simulations with traffic stream
inputs of two types, live and synthetic. The live streams are measurements of packet arrivals and sizes for
349 intervals, 90 sec or 5 min in duration, from 6 Internet links. The synthetic streams are arrivals and
sizes generated by recently developed FSD time series models for the arrivals and sizes of best-effort traffic.
Each of the live streams was fitted by two FSD models, one for the inter-arrivals and one for the sizes, and
a synthetic stream of 5 min was generated by the models. The generated inter-arrivals are independent of
the generated sizes, which is what we found in the live data. The result is 349 synthetic streams that match
the statistical properties collectively of the live streams. For each live or synthetic stream, we carried out
25 runs, each with a number of simulations. For each run we picked a delay δ and a delay probability ω;
simulations were carried out to find the QoS bandwidth β, the bandwidth that results in delay probability
ω for δ. This also yields a QoS utilization u = τ/β. We used 5 delays — 0.001 sec, 0.005 sec, 0.010
sec, 0.050 sec, 0.100 sec — and 5 delay probabilities — 0.001, 0.005, 0.01, 0.02, and 0.05 — employing
all 25 combinations of the two delay criteria. The queueing simulation results in delay data: values of five
variables — QoS utilization u, delay δ, delay probability ω, the mean number of active connections of the
traffic c, and the traffic bit rate τ . The delay data were used in the model building.

8.5 Validity and Applicability

Extensive data exploration with visualization tools, some shown here, demonstrate that the Best-Effort Delay
Model fits the simulation delay data. This, of course, is necessary for the model to be valid. In addition,
validity is supported by the model reproducing the theoretical queueing properties as just discussed.

The validity of the Best-Effort Delay Model depends on the validity of the traffic streams used as inputs
to the queueing simulation; that is, the packet streams must reproduce the statistical properties of best-
effort streams. Of course, the live streams of the study do so because they are best-effort traffic. Extensive
validation has shown that the FSD models, used to generate the packet streams here, provide excellent fits
to best-effort packet streams when c is above about 64 connections, which for a link where γb is about 214

bits/sec/connection means τ is above about 1 megabit/sec. For this reason, only traffic streams with τ greater
than this rate are used in the study, and the Best-Effort Delay Model is valid above this rate.

The results are only valid for links with a large enough buffer that the packet loss is negligible. We have
used open-loop study, which does not provide for the TCP feedback that occurs when loss is significant.

There is also a practical restriction on applicability. We have taken the range of our study to include traffic
bit rates as low as about 1 megabit/sec. We have done this simply because we can do so and achieve valid
results. But even for the least stringent of our delay criteria, δ = 0.1 sec delay and ω = 0.05 delay probability,
the utilizations are low for rates in the range of 1 megabit/sec to 5 megabits/sec. This might well be judged
to be too small a utilization to be practical; if so, it might mean that the what must be sacrificed is the
negligible packet loss, which means that a QoS study at the very low traffic bit rates needs to take account
of TCP feedback.
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One outcome of the dependence of the bandwidth estimation on the traffic statistics is that our solution for
best-effort traffic would not apply to other forms of Internet traffic that do not share the best-effort statistical
properties. One example is voice traffic.

Finally, the Best-Effort Delay Model provides an estimation of bandwidth in isolation without considering
other network factors. A major factor in network design is link failures. Redundancy needs to be built into
the system. So an estimate of bandwidth from the model for a link based on the normal link traffic may be
reduced to provide the redundancy. But the model still plays a role because the bandwidth must be chosen
based on link traffic, but now the traffic in the event of a failure elsewhere.

9 Automated Control: Bandwidth Estimation for VoIP

Today, no automated methods exist for determining how many calls can be put on a VoIP link and maintain
QoS criteria for delay and packet jitter. We designed a queueing simulation and modeling mechanism to
determine a statistical process-control approach that would allow automation provisioning of traffic on a
link.

In the simulation, calls arrive as a Poisson process, a reasonable approximation to the observed behavior of
the arrivals process. For each arrival, we sample with replacement from our call database, about 300,000
calls, and use the observed packet process of each sampled call in the simulation.

In the simulation we fixed the traffic call rate and vary the link bandwidth (link speed) so that the utilization
ranges from 30% to 99%, and study the resulting queueing delay and jitter of the packets. We built statistical
models for the delay and jitter based on the utilization, the number of simultaneous active calls and the
bitrate. The models provide the requisite statistical process control.

We studied our simulation runs and discovered that there are instabilities when the utilization gets beyond a
certain limit, which makes delay estimation problematic. The limit decreases and the traffic rate decreases.
The phenomenon means the network cannot operate at these utilizations, so they are not relevant. We cannot
leave them in the data to be modeled because they depart from standard conditions, so we will eliminated
them from the study, using machine learning rules for the elimination.

10 Work Under The Current Contract

This report describes the work done under the above federal contract as well as previous work done under
federal contract No. F30602-02-2-C0093 awarded to Bell Labs because the work under the new contract
was a continuation of the work under the previous contract.

The following describes that portion of the work completed under the new contract:
Task 1: Packet-Level Measurement

• Newark VoIP packet trace data collection and data processing

• Leipzig best-effort traffic processing

• installation of NLANR packet trace collector on Purdue Internet access link for best-effort traffic
measurement
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Task 2: Statistical Analysis, Data Mining, and Machine Learning for Network Characterization and Model-
ing

• all analysis of the Newark VoIP data

• all work on the integration of best-effort traffic models through the understanding provided by the
fractional sum-difference models

Task 3: Automated Control

• all simulations for bandwidth estimation for VoIP traffic and ensuing analysis and modeling of results

• simulations for best-effort traffic were completely redesigned and carried out, and new results ana-
lyzed and modeled

11 Detailed Technical Report

11.1 Introduction: Contents of the Paper

The Internet is a world-wide computer network; at any given moment, a vast number of pairs of hosts are
transferring files one to the other. Each transferred file is broken up into packets that are sent along a path
across the Internet consisting of links and nodes. The first node is the sending host; a packet exits the host
and travels along a link (fiber, wire, cable, or air) to a first router node, then over a link to a second router
node, and so forth until a last router sends the packet to a receiving host node over a final link.

The packet traffic arriving for transmission on an Internet link is a stream: a sequence of packets with arrival
times (sec) and sizes (bytes or bits). The packets come from pairs of hosts using the link for their transfers;
that is, the link lies on the path from one host to another for each of a collection of pairs of hosts. When a
packet arrives for transmission on a link, it enters a buffer (bits) where it must wait if there are other packets
waiting for transmission or if a packet is in service, that is, in the process of moving out of the buffer onto
the link. If the buffer is full, the packet is dropped.

A link has a bandwidth (bits/sec), the rate at which the bits of a packet are put on the link. Over an interval
of time during which the traffic is stationary, the packets arrive for transmission at a certain rate, the traffic
bit rate (bits/sec), which is defined, formally, to be the mean of the packets sizes (bits) divided by the mean
packet inter-arrival time (sec), but this is approximately the mean number of arriving bits over the interval
divided by the interval length (sec). Over the interval there is a mean simultaneous active connection load,
the mean number of source-destination pairs of hosts actively sending packets over the link. The utilization
of the link is the traffic bit rate divided by the bandwidth; it measures the traffic rate relative to the capacity
of the link.

This article presents results on a fundamental problem of engineering the Internet. What link bandwidth is
needed to accommodate traffic with a certain bit rate and ensure that the transmission on the link maintains
quality-of-service, or QoS, criteria? Finding the QoS bandwidth must be faced in setting up every link on
the Internet, from the low-bandwidth links connecting the computers of a home user to the high-bandwidth
links of a major Internet service provider. Our approach to solving the bandwidth estimation problem is to
use queueing theory and queueing simulations to build a model for the QoS bandwidth. The traffic inputs
are live streams from measurements of live links and synthetic streams from statistical models for traffic
streams.
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Section 11.2 describes Internet TCP/IP transmission technology, which governs almost all computer net-
working today — for example, the networks of Internet service providers, universities, companies, and
homes. Section 11.2 also describes the buffer queueing process and its affect on the QoS of file transfer.

Section 11.3 formulates the particular version of the bandwidth estimation problem that is addressed here,
discusses why the statistical properties of the packet streams are so critical to bandwidth estimation, and
outlines how we use queueing simulations to study the problem. We study “best-effort” Internet traffic
streams because they are the predominant type of traffic on Internet links today. The QoS criteria for
best-effort streams are the packet loss (fraction of lost packets), the queueing delay (sec), and the delay
probability (probability of a packet exceeding the delay). We suppose that the link packet loss is negligible,
and find the QoS bandwidth required for a packet stream of a certain load that satisfies the delay and the
delay probability.

Section 11.4 describes fractional sum-difference (FSD) time series models, which are used to generate the
synthetic streams for the queueing simulations. The FSD models, a new class of non-Gaussian, long-range
dependent time series models, provide excellent fits to packet size time series and to packet inter-arrival
time series. The validation of the FSD models is critical to this study. The validity of our solution to the
bandwidth estimation problem depends on having traffic inputs to the queueing that reproduce the statistical
properties of best-effort traffic. Of course, the live data have the properties, but we need assurance that the
synthetic data do as well.

Section 11.5 describes the live packet arrivals and sizes and the synthetic packet arrivals and sizes that are
generated by the FSD models. Section 11.6 gives the details of the simulations and the resulting delay data:
values of the QoS bandwidth, delay, delay probability, mean number of active host-pair connections of the
traffic, and traffic bit rate.

Model building, based on the simulation delay data and on queueing theory, begins in Section 11.7. To
do the model building and diagnostics, we exploit the structure of the delay data — utilizations for all
combinations of delay and delay probability for each stream, live or synthetic. We develop an initial model
that relates, for each stream, the QoS utilization (bit rate divided by the QoS bandwidth) to the delay and
delay probability. We find a transformation for the utilization for which the functional dependence on the
delay and delay probability does not change with the stream. There is also an additive stream coefficient
that varies across streams, characterizing the statistical properties of each stream. This stream-coefficient
delay model cannot be used for bandwidth estimation because the stream coefficient would not be known in
practice.

Next we add two variables to the model that measure the statistical properties of the streams and that can
be specified or measured in practice — the traffic bit rate and the number of simultaneous active host-pair
connections on the link — and drop the stream coefficients. In effect we have modeled the coefficients.
The result is the Best-Effort Delay Model: a Best-Effort Delay Formula for the utilization as a function of
(1) the delay, (2) the delay probability, (3) the traffic bit rate, and (4) the mean number of active host-pair
connections of the traffic, plus a random error term.

Section 11.8 presents a method for bandwidth estimation that starts with the value from the Best-Effort
Delay Formula, and then uses the error distribution of the Best-Effort Delay Model to find a tolerance
interval whose minimum value provides an conservative estimate with a low probability of being too small.

Section 11.9 discusses previous work on bandwidth estimation, and how it differs from the work here.
Section 11.10 is an extended abstract. Readers who seek just results can proceed to this section; those not
familiar with Internet engineering technology might want to first read Sections 11.2 and 11.3.
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The following notation is used throughout the article:

Packet Stream

• v : arrival numbers (number) v = 1 is the first packet, v = 2 is the second packet, etc.

• av : arrival times (sec)

• tv : inter-arrival times (sec) tv = av+1 − av

• qv : sizes (bytes or bits).

Traffic Load

• c : mean number of simultaneous active connections (number)

• τ : traffic bit rate (bits/sec)

• γp : connection packet rate (packets/sec/connection)

• γb : connection bit rate (bits/sec/connection).

Bandwidth

• β : bandwidth (bits/sec)

• u : utilization (fraction) τ/β.

Queueing

• δ : packet delay (sec)

• ω : delay probability (fraction).

11.2 Internet Technology

The Internet is a computer network over which a pair of host computers can transfer one or more files (Stevens
1994). Consider the downloading of a Web page, which is often made up of more than one file. One host, the
client, sends a request file to start the downloading of the page. Another host, the server, receives the request
file and sends back a first response file; this process continues until all of the response files necessary to
display the page are sent. The client passes the received response files to a browser such as Netscape, which
then displays the page on the screen. This section gives information about some of the Internet engineering
protocols involved in such file transfer.

11.2.1 Packet Communications

When a file is sent, it is broken up into packets whose sizes are 1460 bytes or less. The packets are sent
from the source host to the destination host where they are reassembled to form the original file. They travel
along a path across the Internet that consists of transmission links and routers. The source computer is
connected to a first router by a transmission link; the first router is connected to a second router by another
transmission link, and so forth. A router has input links and output links. When it receives a packet from one
of its input links, it reads the destination address on the packet, determines which of the routers connected
to it by output links should get the packet, and sends out the packet over the output link connected to that
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router. The flight across the Internet ends when a final router receives the packet on one of its input links
and sends the packet to the destination computer over one of its output links.

The two hosts establish a connection to carry out one or more file transfers. The connection consists of
software running on the two computers that manages the sending and receiving of packets. The software
executes an Internet transport protocol, a detailed prescription for how the sending and receiving should
work. The two major transport protocols are UDP and TCP. UDP just sends the packets out. With TCP,
the two hosts exchange control packets that manage the connection. TCP opens the connection, closes it,
retransmits packets not received by the destination, and controls the rate at which packets are sent based on
the amount of retransmission that occurs. The transport software adds a header to each packet that contains
information about the file transfer. The header is 20 bytes for TCP and 8 bytes for UDP.

Software running on the two hosts implements another network protocol, IP (Internet Protocol), that man-
ages the involvement of the two hosts in the routing of a packet across the Internet. The software adds a
20-byte IP header to the packet with information needed in the routing such as the source host IP address
and the destination host IP address. IP epitomizes the conceptual framework that underlies Internet packet
transmission technology. The networks that make up the Internet — for example, the networks of Internet
service providers, universities, companies, and homes — are often referred to as IP networks, although today
it is unnecessary because almost all computer networking is IP, a public-domain technology that defeated
all other contenders, including the proprietary systems of big computer and communications companies.

11.2.2 Link Bandwidth

The links along the path between the source and destination hosts each have a bandwidth β in bits/sec. The
bandwidth refers to the speed at which the bits of a packet are put on the link by a computer or router. For the
link connecting a home computer to a first router, β might be 56 kilobits/sec if the computer uses an internal
modem, or 1.5 megabits/sec if there is a broadband connection, a cable or DSL link. The link connecting a
university computer to a first router might be 10 megabits/sec, 100 megabits/sec, or 1 gigabit/sec. The links
on the core network of a major Internet service provider have a wide range of bandwidths; typical values
range from 45 megabits/sec to 10 gigabits/sec. For a 40 byte packet, which is 320 bits, it takes 5.714 ms
to put the packet on a 56 kilobit/sec link, and 0.032 µs to put it on a 10 gigabits/sec link, which is about
180,000 times faster. Once a bit is put on the link, it travels down the link at the speed of light.

11.2.3 Active Connections, Statistical Multiplexing, and Measures of Traffic Loads

At any given moment, an Internet link has a number of simultaneous active connections; this is the number
of pairs of computers connected with one another that are sending packets over the link. The packets of
the different connections are intermingled on the link; for example, if there are three active connections, the
arrival order of 10 consecutive packets by connection number might be 1, 1, 2, 3, 1, 1, 3, 3, 2, and 3. The
intermingling is referred to as “statistical multiplexing”. On a link that connects a local network with about
500 users there might be 300 active connections during a peak period. On the core link of an Internet service
provider there might be 60,000 active connections.

During an interval of time when the traffic is stationary, there is a mean number of active connections c, and
a traffic bit rate τ in bits/sec. Let µ(t) in sec be the mean packet inter-arrival time, and let µ(q), in bits, be
the mean packet size. Then the packet arrival rate per connection is γp = c−1µ−1

(t) packets/sec/connection.
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The bit rate per connection is γb = µ(q)c

−1µ−1
(t) = τc−1 bits/sec/connection. γp and γb measure the average

host-to-host speed of Internet connections — for example, the rate at which the file of a page is downloaded
— for the pairs of hosts that use the link.

The bit rate of all traffic on the link is τ = cγb. Of course, τ ≤ β because bits cannot be put on the link at
a rate faster than the bandwidth. A larger traffic bit rate τ requires a larger bandwidth β. Let us return to
the path across the Internet for the Web page download discussed earlier. Starting from the link connecting
the client computer to the Internet and proceeding though the links, τ tends to increase, and therefore, so
does β. We start with a low bandwidth link, say 1.5 megabits/sec, then to a link at the edge of a service
provider network, say 156 megabits/sec, and then to the core links of the provider, say 10 gigabits/sec. As we
continue further, we move from the core to the service provider edge to a link connected to the destination
computer, so τ and β tend to decrease.

11.2.4 Queueing, Best-Effort Traffic, and QoS

A packet arriving for transmission on a link is presented with a queueing mechanism. The service time for a
packet is the time it takes to put the packet on the link, which is the packet size divided by the bandwidth β.
If there are any packets whose transmission is not completed, then the packet must wait until these packets
are fully transmitted before its transmission can begin. This is the queueing delay. The packets waiting for
transmission are stored in a buffer, a region in the memory of the computer or router. The buffer has a size.
If a packet arrives and the buffer is full, then the packet is dropped. As we will see, the arrival process for
packets on a link is long-range dependent; at low loads, the traffic is very bursty, but as the load increases,
the burstiness dissipates. For a fixed τ and β, bursty traffic results in a much larger queue-height distribution
than traffic with Poisson arrivals.

TCP, the predominant protocol for managing file transfers, changes the rate at which it sends packets with
file contents. TCP increases the rate when all goes well, but reduces the rate when a destination computer
indicates that a packet has not been received; the assumption is that congestion somewhere on the path has
led to a buffer overflow, and the rate reduction is needed to help relieve the congestion. In other words, TCP
is closed-loop because there is feedback. UDP is not aware of dropped packets and does not respond to
them.

When traffic is sent across the Internet using TCP or UDP and this queueing mechanism, with no attempts to
add additional protocol features to improve QoS, then the traffic is referred to as “best-effort”. IP networks
are a best-effort system because the standard protocols make an effort to get packets to their destination, but
packets can be delayed, lost, or delivered out of order. Queueing delay and packet drops degrade the QoS of
best-effort traffic. For example, for Web page transfers, the result is a longer wait by the user, partly because
the packets sit in the queue, and partly because of TCP reducing its sending rate when retransmission occurs.
Best-effort traffic contrasts with priority traffic, which when it arrives at a router, goes in front of best-effort
packets. Packets for voice traffic over the Internet are often given priority.
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11.3 The Bandwidth Estimation Problem: Formulation and Stream Statistical Properties

11.3.1 Formulation

Poor QoS resulting from delays and drops on an Internet link can be improved by increasing the link band-
width β. The service time decreases, so if the traffic rate τ remains fixed, the queuing delay distribution
decreases, and delay and loss are reduced. Loss and delay are also affected by the buffer size; the larger
the buffer size, the fewer the drops, but then the queueing delay has the potential to increase because the
maximum queueing delay is the buffer size divided by β.

The bandwidth estimation problem is to choose β to satisfy QoS criteria. The resulting value of β is the
QoS bandwidth. The QoS utilization is the value of u = τ/β corresponding to the QoS bandwidth. When
a local network, such as a company or university, purchases bandwidth from an Internet service provider, a
decision on β must be made. When an Internet service provider designs its network, it must choose β for
each of its links. The decision must be based on the traffic load and QoS criteria.

Here, we address the bandwidth estimation problem specifically for links with best-effort traffic. We take
the QoS criteria to be delay and loss. For delay, we use two metrics: a delay, δ, and the delay probability,
ω, the probability that a packet exceeds the delay. For loss, we suppose that the decision has been made
to choose a buffer size large enough that drops will be negligible. This is, for example, consistent with
the current practice of service providers on their core links (Iyer, Bhattacharyya, Taft, McKeown, and Diot
2003). Of course, a large buffer size allows the possibility of a large delay, but setting QoS values for δ
and ω allows us to control delay probabilistically; we will chose ω to be small. The alternative is to use the
buffer size as a hard limit on delay, but because dropped packets are an extreme remedy with more serious
degradations of QoS, it is preferable to separate loss and delay control, using the softer probabilistic control
for delay. Stipulating that packet loss will be negligible on the link means that for a connection that uses the
link, another link will be the loss bottleneck; that is, if packets of the connection are dropped, it will be on
another link. It also means that TCP feedback can be ignored in studying the bandwidth estimation problem.

11.3.2 Packet Stream Statistical Properties

A packet stream consists of a sequence of arriving packets, each with a size. Let v be the arrival number; v
=1 is the first packet, v = 2 is the second packet, and so forth. Let av be the arrival times, let tv = av+1 − av

be the inter-arrival times, and let qv be the size of the packet arriving at time av. The statistical properties of
the packet stream will be described by the statistical properties of tv and qv as time series in v.

The QoS bandwidth for a packet stream depends critically on the statistical properties of the tv and qv.
Directly, the bandwidth depends on the queue-length time process. But the queue-length time process
depends critically on the stream statistical properties. Here, we consider best-effort traffic. It has persistent,
long-range dependent tv and qv (Ribeiro, Riedi, Crouse, and Baraniuk 1999; Gao and Rubin 2001; Cao,
Cleveland, Lin, and Sun 2001). Persistent, long-range dependent tv and qv have dramatically larger queue-
size distributions than those for independent tv and qv (Konstantopoulos and Lin 1996; Erramilli, Narayan,
and Willinger 1996; Cao, Cleveland, Lin, and Sun 2001). The long-range dependent traffic is burstier than
the independent traffic, so the QoS utilization is smaller because more headroom is needed to allow for
the bursts. This finding demonstrates quite clearly the impact of the statistical properties. But a corollary
of the finding is that the results here are limited to best-effort traffic streams (or any other streams with
similar statistical properties). Results for other types of traffic with quite different statistical properties —

18



 
 
 for example, links carrying voice traffic using current Internet protocols — are different.

Best-effort traffic is not homogeneous. As the traffic connection load c increases, the arrivals tend toward
Poisson and the sizes tend toward independent(Cao, Cleveland, Lin, and Sun 2002; Cao and Ramanan 2002).
The reason is the increased statistical multiplexing of packets from different connections; the intermingling
of the packets of different connections is a randomization process that breaks down the correlation of the
streams. In other words, the long-range dependence dissipates. This means that in our bandwidth estimation
study, we can expect a changing estimation mechanism as c increases. In particular, we expect “multiplexing
gains”, greater utilization due to the reduction in dependence. Because of the change in properties with c,
we must be sure to study streams with a wide range of values of c.

11.4 FSD Time Series Models for Packet Arrivals and Sizes

This section presents FSD time series models, a new class of non-Gaussian, long-range dependent mod-
els (Cao, Cleveland, Lin, and Sun 2002; Cao, Cleveland, and Sun 2004). The two independent packet-stream
time series — the inter-arrivals, tv, and the sizes, qv — are each modeled by an FSD model; the models are
used to generate synthetic best-effort traffic streams for the queueing simulations of our study.

There are a number of known properties of the tv and qv that had to be accommodated by the FSD models.
First, these two time series are long-range dependent. This is associated with the important discovery
of long-range dependence of packet arrival counts and of packet byte counts in successive equal-length
intervals of time, such as 10 ms (Leland, Taqqu, Willinger, and Wilson 1994; Paxson and Floyd 1995).
Second, the tv and qv are non-Gaussian. The complex non-Gaussian behavior has been demonstrated clearly
in important work showing that highly nonlinear multiplicative multi-fractal models can account for the
statistical properties of tv and qv (Riedi, Crouse, Ribeiro, and Baraniuk 1999; Gao and Rubin 2001). These
nonparametric models utilize many coefficients and a complex cascade structure to explain the properties.
Third, the statistical properties of the two time series change as c increases (Cao, Cleveland, Lin, and Sun
2002). The arrivals tend toward Poisson and the sizes tend toward independent; there are always long-range
dependent components present in the series, but the contributions of the components to the variances of the
series goes to zero.

11.4.1 Solving the Non-Gaussian Challenge

The challenge in modeling tv and qv is their combined non-Gaussian and long-range dependent properties,
a difficult combination that does not, without a simplifying approach, allow parsimonious characterization.
We discovered that monotone nonlinear transformations of the inter-arrivals and sizes are very well fitted by
parsimonious Gaussian time series, a very simple class of fractional ARIMA models (Hosking 1981) with
a small number of parameters. In other words, the transformations and the Gaussian models account for the
complex multifractal properties of the tv and the qv in a simple way.

11.4.2 The FSD Model Class

Suppose xv for v = 1, 2, . . . is a stationary time series with marginal cumulative distribution function
F (x;φ) where φ is a vector of unknown parameters. Let x∗v = H(xv;φ) be a transformation of xv such that
the marginal distribution of x∗v is normal with mean 0 and variance 1. We have H(xv;φ) = G−1(F (x;φ)),
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where G(z) is the cumulative distribution function of a normal random variable with mean 0 and variance
1. Next we suppose x∗v is a Gaussian time series and call x∗v the “Gaussian image” of xv.

Suppose x∗v has the following form:

x∗v =
√

1 − θ sv +
√
θ nv,

where sv and nv are independent of one another and each has mean 0 and variance 1. nv is Gaussian white
noise, that is, an independent time series. sv is a Gaussian fractional ARIMA (Hosking 1981)

(I −B)dsv = εv + εu−1

where Bsv = su−1, 0 < d < 0.5, and εv is Gaussian white noise with mean 0 and variance

σ2
ε =

(1 − d)Γ2(1 − d)

2Γ(1 − 2d)
.

xv is a fractional sum-difference (FSD) time series. Its Gaussian image, x∗v, has two components.
√

1 − θsv

is the long-range-dependent, or lrd, component; its variance is 1 − θ.
√
θ is the white-noise component; its

variance is θ.

Let px∗(f) be the power spectrum of the x∗v. Then

px∗(f) = (1 − θ)σ2
ε

4 cos2(πf)
(

4 sin2(πf)
)d

+ θ

for 0 ≤ f ≤ 0.5. As f → 0.5, px∗(f) decreases monotonically to θ. As f → 0, px∗(f) goes to infinity like
sin−2d(πf) ∼ f−2d, one outcome of long-range dependence. For nonnegative integer lags k, let rx∗(k),
rs(k), and rn(k) be the autocovariance functions of x∗v, sv, and nv, respectively. Because the three series
have variance 1, the autocovariance functions are also the autocorrelation functions. rs(k) is positive and
falls off like k2d−1 as k increases, another outcome of long-range dependence. For k > 0, rn(k) = 0 and

rx∗(k) = (1 − θ)rs(k).

As θ → 1, x∗v goes to white noise: px∗(f) → 1 and rx∗(k) → 0 for k > 0. The change in the autocovariance
function and power spectrum are instructive. As θ gets closer to 1, the rise of px∗(f) near f = 0 is always
to order f−2d, and the rate of decay of rx∗(k) for large k is always k2d−1; but the ascent of px∗(f) at the
origin begins closer and closer to f = 0 and the rx∗(k) get uniformly smaller by the multiplicative factor
1 − θ.

11.4.3 Marginal Distributions of qv and tv

We model the marginal distribution of tv by a Weibull with shape λ and scale α, a family with two unknown
parameters. Estimates of λ are almost always less than 1. The Weibull provides an excellent approximation
of the sample marginal distribution of the tv except that the smallest 3% to 5% of the sample distribution is
truncated to a nearly constant value due to certain network transmission properties.

The marginal distribution of qv is modeled as follows. While packets less than 40 bytes can occur, it is
sufficiently rare that we ignore this and suppose 40 ≤ qv ≤ 1500. First, we provide for A atoms at sizes
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φ
(s)
1 . . . φ

(s)
A such as 40 bytes, 512 bytes, 576 bytes, and 1500 bytes that are commonly occurring sizes; the

atom probabilities are φ(a)
1 . . . φ

(a)
A . For the remaining sizes, we divided the interval [40, 1500] bytes into

C sub-intervals using C − 1 distinct break points with values that are greater than 40 bytes and less than
1500 bytes, φ(b)

1 , . . . φ
(b)
C−1. For each of the C sub-intervals, the size distribution has an equal probability

for the remaining sizes (excluding the atoms) in the sub-interval; the total probabilities for the sub-intervals
are φ(i)

1 , . . . , φ
(i)
C . Typically, with just 3 atoms at 40 bytes, 576 bytes, and 1500 bytes, and with just 2 break

points at 50 bytes and 200 bytes, we get an excellent approximation of the marginal distribution.

11.4.4 Gaussian Images of qv and tv

The transformed time series t∗v and q∗v appear to be quite close to Gaussian processes. Some small amount
of non-Gaussian behavior is still present but it is minor. The autocorrelation structure of these Gaussian
images are very well fitted by the FSD autocorrelation structure.

The parameters of the FSD model are the following:

• qv marginal distribution: A atom probabilities φ(a)
i at A sizes φ(s)

i ; C − 1 break points φ(b)
i and C

sub-interval probabilities φ(i)
i

• tv marginal distribution: shape λ and scale α
• q∗v time dependence: fractional difference coefficient d(q) and white-noise variance θ(q)

• t∗v time dependence: fractional difference coefficient d(t) and white-noise variance θ(t).

We found that the d(q) and d(t) do not depend on c; this is based on empirical study, and it is supported
by theory. The estimated values are 0.410 and 0.411, respectively. We take the value of each of these two
parameters to be 0.41. We found that as c increases, estimates of λ, θ(q), and θ(t) all tend toward 1. This
means the tv tend to a independent exponentials, a Poisson process and the qv tend toward independence. In
other words, the statistical models account for the change in the tv and qv and c increases that was discussed
earlier. We estimated these three parameters and α by partial likelihood methods with d(q) and d(t) fixed to
0.41. The marginal distribution of qv on a given link does not change with c, but it does change from link
to link. To generate traffic, we must specify the atom and sub-interval probabilities. This provides a mean
packet size µ(q), measured in bits/packet.

11.5 Packet Stream Data: Live and Synthetic

We use packet stream data, values of packet arrivals and sizes, in studying the bandwidth estimation problem.
They are used as input traffic for queueing simulations. There are two types of streams: live and synthetic.
The live streams are from packet traces, data collection from live Internet links. The synthetic streams are
generated by the FSD models.

11.5.1 Live Packet Streams

A commonly-used measurement framework for empirical Internet studies results in packet traces (Claffy,
Braun, and Polyzos 1995; Paxson 1997; Duffield, Feldmann, Friedmann, Greenberg, Greer, Johnson, Kalmanek,
B.Krishnamurthy, Lavelle, Mishra, Ramakrishnan, Rexford, True, , and van der Merwe 2000). The arrival
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time of each packet on a link is recorded and the contents of the headers are captured. The vast majority of
packets are transported by TCP, so this means most headers have 40 bytes, 20 for TCP and 20 for IP. The live
packet traffic is measured by this mechanism over an interval; the time-stamps provide the live inter-arrival
times, tv, and the headers contain information that provides the live sizes, qv; so for each trace, there is a
stream of live arrivals and sizes.

The live stream database used in this presentation consists of 349 streams, 90 sec or 5 min in duration, from
6 Internet links that we name BELL, NZIX, AIX1, AIX2, MFN1, and MFN2. The measured streams have
negligible delay on the link input router. The mean number of simultaneous active connections, c, ranges
from 49 connections to 18,976 connections. The traffic bit rate, τ , ranges from 1.00 megabits/sec to 348
megabits/sec.

BELL is a 100 megabit/sec link in Murray Hill, NJ, USA connecting a Bell Labs local network of about
3000 hosts to the rest of the Internet. The transmission is half-duplex, so both directions, in and out, are
multiplexed and carried on the same link, and a stream is the multiplexing of both directions; but to keep the
variable c commensurate for all of the six links, the two directions for each connection is counted as two. In
this presentation we use 195 BELL traces, each 5 min in length. NZIX is the 100 megabit/sec New Zealand
Internet exchange hosted by the ITS department at the University of Waikato, Hamilton, New Zealand, that
served as a peering point among a number of major New Zealand Internet Service Providers at the time of
data collection (http://wand.cs.waikato.ac.nz/wand/wits/nzix/2/ ). All arriving packets from the input/output
ports on the switch are mirrored, multiplexed, and sent to a port where they are measured. Because all
connections have two directions at the exchange, each connection counts 2 as for BELL. In this presentation
we use 84 NZIX traces, each 5 min in length. AIX1 and AIX2 are two separate 622 megabit/sec OC12
packet-over-sonet links, each carrying one direction of the traffic between NASA Ames and the MAE-West
Internet exchange. In this presentation we use 23 AIX1 and 23 AIX2 traces, each 90 sec in length. AIX1 and
AIX2 streams were collected as part of a project at the National Laboratory for Applied Network Research
where the data are collected in blocks of 90 sec (http://pma.nlanr.net/PMA ). MFN1 and MFN2 are two
separate 2.5 gigabit/sec OC48 packet-over-sonet links on the network of the service provider Metropolitan
Fiber Network; each link carries one direction of traffic between San Jose, California, USA and Seattle,
Washington, USA. In this presentation we use 12 MFN1 and 12 MFN2 traces, each 5 min in length.

The statistical properties of streams, as we have stated, depend on the connection load c, so it is important
that the time interval of a live stream be small enough that c does not vary appreciably over the interval. For
any link, there is diurnal variation, a change in c with the time of day due to changes in the number of users.
We chose 5 minutes to be the upper bound of the length of each stream to ensure stationarity. BELL, NXIZ,
MFN1, and MFN2 streams are 5 min. AIX1 and AIX2 traces are 90 sec because the sampling plan at these
sites consisted of noncontiguous 90-sec intervals.

11.5.2 Synthetic Packet Streams

The synthetic streams are arrivals and sizes generated by the FSD models for tv and qv. Each of the live
streams is fitted by two FSD models, one for the tv and one for the qv, and a synthetic stream of 5 min is
generated by the models. The generated tv are independent of the generated qv, which is what we found in
the live data. The result is 349 synthetic streams that match the statistical properties collectively of the live
streams.
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11.6 Queueing Simulation

We study the bandwidth estimation problem through queueing simulation with an infinite buffer and a first-
in-first-out queueing discipline. The inputs to the queues are the arrivals and sizes of the 349 live and 349
synthetic packet streams described in Section 11.5.

For each live or synthetic stream, we carry out 25 runs, each with a number of simulations. For each run
we pick a delay δ and a delay probability ω; simulations are carried out to find the QoS bandwidth β, the
bandwidth that results in delay probability ω for the delay δ. This also yields a QoS utilization u = τ/β.
We use 5 delays — 0.001 sec, 0.005 sec, 0.010 sec, 0.050 sec, 0.100 sec — and 5 delay probabilities —
0.001, 0.005, 0.01, 0.02, and 0.05 — employing all 25 combinations of the two delay criteria. For each
simulation of a collection, δ is fixed a priori. We measure the queueing delay at the arrival times of the
packets, which determines the simulated queueing delay process. From the simulated process we find the
delay probability for the chosen δ. We repeat the simulation, changing the trial QoS bandwidth, until the
attained delay probability approximately matches the chosen delay probability ω. The optimization is easy
because ω decreases as the trial QoS bandwidth increases for fixed δ.

In the optimization, we do not allow the utilization to go above 0.97; in other words, if the true QoS uti-
lization is above 0.97, we set it to 0.97. The reason is that we use the logit scale, log(u/(1 − u)), in the
modeling; above about 0.97, the scale becomes very sensitive to model mis-specification and the accuracy
of the simulation, even though the utilizations above 0.97 for practical purposes are nearly equal. Similarly,
we limit the lower range of the utilizations to be 0.05.

The result of the 25 runs for each of the 349 live and 349 synthetic streams is 25 measurements, one per run,
of each of five variables: QoS utilization u, delay δ, delay probability ω, mean number of active connections
c, and bit rate τ . The first three variables vary from run to run; the last two variables are the same for the 25
runs for a stream because they measure the stream statistical properties. By design, the range of δ is 0.001
sec to 0.100 sec, and the range of ω is 0.001 to 0.05. The range of the QoS utilizations is 0.05 to 0.97. The
two additional variables τ and c, which measure the statistical properties of the streams, are constant across
the 25 runs for each stream. c ranges from 49 connections to 18,976 connections, and τ ranges from 1.00
megabits/sec to 348 megabits/sec.

11.7 Model Building: A Bandwidth Formula Plus Random Error

This section describes the process of building the Best-Effort Delay Model, which is the Best-Effort Delay
Formula plus random error. The model describes the dependence of the utilization u on the delay δ, the
delay probability ω, the traffic bit rate τ , and the expected number of active connections c. The modeling
process involves both theory and empirical study, and establishes a basis for the model.

The theoretical basis is queueing theory. The empirical basis is the delay data from the queueing simulations,
the measurements of the five variables described in Section 11.6. The following notation is used for the
values of these five variables for either the live delay data or the synthetic delay data. δj , for j = 1 to 5, are
the 5 values of the delay in increasing order, and ωk, for k =1 to 5, are the 5 values of the delay probability
in increasing order. uijk is the QoS utilization for delay δj , delay probability ωk, and stream i, where i = 1
to 349. τi is the traffic bit rate and ci is the mean number of active connections, both for stream i.
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11.7.1 Strategy: Initial Modeling of Dependence on δ and ω

The structure of the data provides an opportunity for careful initial study of the dependency of the uijk on δj
and ωk. We have 25 measurements of each of these variables for each stream i, and for these measurements,
both τi and ci are constant. We start our model building by exploiting this opportunity.

We will consider modeling each stream separately, but hope there will be model consistency across streams
that allows simplification. If such simplicity is to occur, it is likely that it will require a monotone trans-
formation of the uijk because they vary between 0 and 1. So we begin, conceptually, with a model of the
form

f(uijk) = gi(δj , ωk) + εijk.

The εijk are a sample from a distribution with mean 0. f is a monotone function of u, and gi is a function
of δ and ω; we want to choose f to make gi as simple as possible, that is, vary as little as possible with i.

11.7.2 Conditional Dependence of u on δ

We start our exploration of the data by taking f(u) = u and suppose that a logical scale for δ is the log. In
all cases, we use log base 2 and indicate this by writing log2 in our formulas. We do not necessarily believe
that this identity function for f is the right transformation, but it is helpful to study the data initially on the
untransformed utilization scale.

Our first step is to explore the conditional dependence of uijk on log2(δj) given ωk and the stream i by
trellis display (Becker, Cleveland, and Shyu 1996). For each combination of the delay probability ωk and
the stream i, we graph uijk against log2(δj). We did this once for all 349 live streams and once for all 349
synthetic streams. Figure 1 illustrates this by a trellis display for 16 of the live streams. The 16 streams were
chosen to nearly cover the range of values of the τi. Let τ(v), for v = 1 to 349, be the values ordered from
smallest to largest, and take τ(v) to be the quantile of the empirical distribution of the values of order v/349.
Then we chose the 16 streams whose ranks v yield orders the closest to the 16 equally-spaced orders from
0.05 to 0.95. On the figure, there are 80 panels divided into 10 columns and 8 rows. On each panel, uijk is
graphed against log2(δj) for one value of ωk and one stream; the strip labels at the top of each panel give
the value of ωk and the rank of the stream. There are 5 points per panel, one for each value of log2(δj).

Figure 1 shows a number of overall effects of τ , δ, and ω on u. For each pair of values of ω and τ , there is
an increase in u with δ, a strong main effect in the data. In addition, there is an increase with τ for fixed δ
and ω, another strong main effect. There is also a main effect for ω, but smaller in magnitude than for the
other two variables. The dependence of u on log2(δ) is nonlinear, and changes substantially with the value
of τ ; as τ increases, the overall slope in u as function of log2(δ) first increases and then decreases. In other
words, there is an interaction between log2(δ) and τ . Such an interaction complicates the dependence, so
we search further for a transformation f of u that removes the interaction. This pattern occurs when all of
the live streams or all of the synthetic streams are plotted in the same way.

There is an interaction between log2(δ) and τ in part because once u is close to 1, where there is little
room for change as a function of log2(δ). For this reason, we tried expanding the scale at 1 by taking the
function f(u) = log2(1 − u). This did not achieve appreciably greater simplicity because nonlinearity and
an interaction are still strongly present, but the interaction cause is behavior for smaller values of τ .

The nature of the remaining interaction for f(u) = log2(1 − u) suggests that a logit transformation might
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Figure 1: Utilization, u, is graphed against log delay, log2(δ), given the delay probability, ω, and the stream,
i.
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do better:

f(u) = logit2(u) = log2

(

u

1 − u

)

.

Figure 2 plots logit2(uijk) against log2(δj) using the same streams and method as Figure 1. The logit
function greatly simplifies the dependence. The dependence on log2(δ) is linear. There does not appear to
be any remaining interaction among the three variables: log2(δ), τ , and ω. To help show this, 16 lines with
different intercepts but the same linear coefficient, have been drawn on the panels. The method of fitting
will be described shortly. The lines provide an excellent fit.

11.7.3 Theory: The Classical Erlang Delay Formula

The packet arrivals aj are not Poisson, although they to tend toward Poisson as c and τ increase. The packet
sizes, and therefore the service times, are not independent exponential; the packet sizes have a bounded
discrete distribution and are long-range dependent, although they tend to independent as c and τ increase.
Still, we will use, as a suggestive case, the results for Poisson arrivals and i.i.d. exponential service times
to provide guidance for our model building. Erlang showed that for such a model, the following equation
holds (Cooper 1972):

ω = ue−(1−u)βδ.

Substituting for β = τ/u and taking the negative log of both sides we have

− log2(ω) = − log2(u) + log2(e)
1 − u

u
δτ. (1)

Because ω, which ranges from 0.001 to 0.05, is small in the majority of our simulations compared with u,
we have, approximately,

− log2(ω) = log2(e)
1 − u

u
δτ.

Taking logs of both sides and rearranging we have

logit2(u) = log2(log2(e)) + log2(τ) + log2(δ) − log2(− log2(ω)). (2)

So certain aspects of the simplicity of this classical Erlang delay formula occur also in the pattern for our
much more statistically complex packet streams. In both cases, logit2(u) is additive in functions of τ , δ, and
ω, and the dependence is linear in log2(δ).

11.7.4 Conditional Dependence of u on ω

The approximate Erlang delay formula suggests that we try the term − log2(− log2(ω)), the negative com-
plementary log of ω, in the model. In addition, as we will see in Section 11.9, certain asymptotic results
suggest this term as well. We studied the dependence of logit2(u) on − log2(− log2(1−ω)) for all synthetic
and live streams using trellis display in the same way that we studied the dependence on log2(δ). Figure 3
is a trellis plot using the same 16 live streams as in Figure 2. On each panel, logit2(uijk) is graphed against
− log2(− log2(ωk)) for one value of δj and one stream.

Figure 3 shows that the guidance from the Erlang formula is on target; logit2(u) is linear in − log2(− log2(ω)),
and the slope remains constant across streams and across different values of δ. To help show this, lines with
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Figure 2: Logit utilization, logit2(u), is graphed against log delay, log2(δ), given the delay probability, ω,
and the stream, i.
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Figure 3: Logit utilization, logit2(u), is graphed against the negative complementary log of the delay prob-
ability, − log2(− log2(ω)), given the delay, δ, and the stream, i.
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the same linear coefficient but different intercepts, have been drawn on the panels. The lines provide an
excellent fit except for the errant points for high utilizations observed earlier. The method of fitting will be
described shortly. This pattern occurs when all of the live streams or all of the synthetic streams are plotted
in the same way.

A Stream-Coefficient Delay Model

The empirical findings in Figures 2 and 3 and the guidance form the Erlang Delay Formula have led to a
very simple model that fits the data:

, logit2(uijk) = µi + oδ log2(δj) + oω(− log2(− log2(ωk))) + εijk (3)

where the εijk are realizations of an error random variable with mean 0 and median absolute deviationm(ε).
The µi are stream coefficients; they change with the packet stream i and characterize the statistical properties
of the stream.

We fitted the stream-coefficient delay model of Equation 3 twice, once to the 349 live streams and once to the
349 synthetic streams; in other words, we estimated the coefficients µi, oδ, and oω twice. Data exploration
suggests that the error distribution has longer tails than the normal, so we used the bisquare method of robust
estimation (Mosteller and Tukey 1977). The estimates of oδ and oω are

Live: ôδ = 0.411 ôω = 0.868

Synthetic: ôδ = 0.436 ôω = 0.907.

The two sets of estimates are very close in the sense that the fitted equation is very close, that is, results in
very similar fitted QoS utilizations. For the 16 streams shown in Figures 2 and 3, the lines are drawn using
the formula in Equation 3 with the bisquare parameter estimates — ôδ, ôω, and µ̂i.

Because of the long-tailed error distribution, we use the median absolute deviation, mε, as a measure of the
spread. The estimates from the residuals of the two fits are

Live: m̂(ε) = 0.210

Synthetic: m̂(ε) = 0.187.

The estimates are very small compared with the variation in logit2(u). In other words, the stream-coefficient
delay model provides a very close fit to the logit2(uijk). Of course, this was evident from Figures 2 and 3
because the fitted lines are quite close to the data.

11.7.5 Strategy: Incorporating Dependence on τ and c for Practical Estimation

The coefficient µi in the stream-coefficient delay model of Equation 3 varies with the packet stream and
reflects how the changing statistical properties of the streams affect the QoS utilization. Part of the simplicity
of the model is that a single number characterizes how the statistical properties of a stream affect the QoS
bandwidth. However, the model cannot be used as a practical matter for bandwidth estimation because it
requires a value of µ, which would not typically be known. If we knew details of the traffic characteristics
in detail for the link, for example, if we had FSD parameters, we could generate traffic and run simulations
to determine µ and therefore the bandwidth. This might be possible in certain cases, but in general is not
feasible.
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What we must do is start with Equation 3, and find readily-available variables that measure stream statistical
properties and can replace µ in the stream-coefficient delay model. We carry out this task in the remainder
of this section. Two variables replace µ, the bit rate τ and the mean number of active connections c, with
their values of τi and ci for each of our packet streams. We will use both theory and empirical study, as we
did for the stream-coefficient delay model, to carry out the model building.

11.7.6 Theory: Fast-Forward Invariance, Rate Gains, and Multiplexing Gains

Figures 2 and 3 show that the QoS utilization u increases with τ . There are two causes: rate gains and
multiplexing gains. Because c is positively correlated with τ , u increases with c as well. But τ and c
measure different aspects of the load, which is important to the modeling. τ is equal to cγb where γb is the
connection bit rate in bits/sec/connection. γb measures the end-to-end speed of transfers. c measures the
amount of multiplexing. An increase in either increases τ .

First we introduce fast-forwarding. Consider a generalized packet stream with bit rate τ input to a queue
without any assumptions about the statistical properties. The packet sizes can be any sequence of positive
random variables, and the inter-arrivals can be any point process. Suppose we are operating at the QoS
utilization u = τ/β for QoS delay criteria δ and ω. Now for h > 1, we speed up the traffic by dividing all
inter-arrival times tv by h. The packet stream has a rate change: the statistical properties of the tv change
only by a multiplicative constant. A rate increase of h increases γb by the factor h but not c. The bit rate
τ changes to hτ . Suppose we also multiply the bandwidth β by h, so that the utilization u is constant.
Then the delay process of the rate-changed packet stream is the delay process for the original packet stream
divided by h. That is, if we carried out a simulation with a live or synthetic packet stream, and then repeated
the simulation with the rate change, then the delay of each packet in the second simulation would be the
delay in the first divided by h. The traffic bit rate, the bandwidth, and the delay process are speeded up
by the factor h, but the variation of the packet stream and the queueing otherwise remain the same. If we
changed our delay criterion from δ to δ/h, then the QoS utilization u would be the same, which means the
QoS bandwidth is hβ. It is as if we videotaped the queueing mechanism in the first simulation and then
produced the second by watching the tape on fast forward with the clock on the tape player running faster
by the factor h as well; we will call this phenomenon fast-forward invariance.

Let us now reduce some of the speed-up of the fast forwarding. We will divide the tv by h which increases
γb by the factor h. But we hold δ fixed and do not decrease by the factor 1/h. What is the new QoS u that
satisfies the delay criteria δ and ω? Since u satisfies the criteria for delay δ/h, we have room for more delay,
so u can increase. In other words, a rate increase results in utilization gains for the same δ. This is the rate
gain.

Now suppose we hold τ fixed but increase c by the factor h > 1. This means that γb must be reduced by the
factor 1/h. Now the statistical properties change in other ways due to the increased multiplexing. As we
have seen in Section 11.4, the tv tend toward Poisson and the qv tend toward independence. The dissipation
of the long-range dependence of the packet streams, as well as the tendency of the marginal distribution
of tv toward exponential, tends to decrease the queueing delay distribution and thereby increase the QoS
utilization. In other words, there are statistical multiplexing gains.

These theoretical considerations lead us to two important conclusions about modeling. First, we want to be
sure that whatever model results, it must obey the principle of fast-forward invariance. Second, it is unlikely
that it will be enough to model with just τ . If γb were constant across the Internet, τ and c would measure
exactly the same thing for our purposes and we would have no need for c beyond τ . But if γb changes
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substantially, as seems likely, then we will need c as well. Figure 4 shows the 6 medians from the 349 values
of log2(γb) for our live streams broken up into 6 groups by the link. The range of the medians is about 4 log
base 2 bits/sec/connection, which means that the medians of γb change by a factor of 16. One link, NZIX,
is appreciably slower than the others.

... . ..

AIX1

AIX2

BELL

MFN1

MFN2

NZIX

10 11 12 13 14 15

Log Connection Bitrate (log base 2 bits/sec/connection)

Figure 4: Dotplot of median log connection bit rate, log2(γb), for 6 Internet links.

11.7.7 Modeling with τ and c

We will begin by modeling just with τ to see if this can explain the observed utilizations without c. The
approximate Erlang delay formula in Equation 2 suggests that the dependence of the stream coefficients on
τ is linear in log2(τ). This means the model for logit2(uijk) is

logit2(uijk) = o+ oτ log2(τi) + oδ log2(δj) + oω(− log2(− log2(ωk))) + ψijk. (4)

where the ψijk are realizations of an error random variable with mean 0. In our initial explorations for the fit
and the residuals we discovered that the spread of the residuals increased with increasing δj . So we model
the median absolute deviation of the ψijk by mδj

(ψ), allowing it to change with δj .

We fitted the model to the live data and to the synthetic data using bisquare, also accommodating the chang-
ing value of mδj

(ψ). Figure 5 shows dotplots of the 6 medians of the residuals for the 6 links. There is a
clear link effect, mimicing the behavior Figure 4; the two links with the largest and smallest residual medi-
ans are the two with the largest and smallest median connection bit rates. The behavior of these extremes
is what we would expect. For example, NZIX has the smallest median γb, so its bit rate under-predicts the
utilization because a stream at NZIX with a certain τ has more multiplexing than average than streams at
other links with the same τ , which means the favorable statistical properties push the utilization higher than
expected under the model. The same plot for the synthetic streams shows the same effect.

In addition, there is another inadequacy of this first model. Because γb is changing, we want the model
to obey the principle of fast-forward invariance, but it does not because the estimates of oτ and oδ are not
equal.

We will enlarge the bandwidth model by adding the variable log2(c). Because log2(τ) is used in the initial
model, adding log2(c) is equivalent to adding γb. In doing this we want an equation that obeys fast-forward
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Figure 5: Dotplot of link median residuals from the first fit to the logit utilization using only the bit rate τ to
characterize stream statistical properties.

invariance: if we hold c fixed, multiply τ by h, and divide δ by h, then we do not want a change in the QoS
utilization. This is achieved by the Best-Effort Delay Model:

logit2(uijk) = o+ oc log2(ci) + oτδ log2(τiδj) + oω(− log2(− log2(ωk))) + ψijk (5)

where the ψijk are error variables with mean 0 and median absolute deviation mδj
(ψ). Fast-forward invari-

ance is achieved by entering τ and δ as a product.

We fitted the enlarged of Equation 5 to the live streams and to the synthetic streams using bisquare because
our exploration showed that the error distribution has longer tails than the normal; the estimation included a
normalization to adjust for the mδj

(ψ). The bisquare estimates of o, oc, oτδ, and oω are

Live: ô = −8.933 ôc = 0.420 ôτδ = 0.444 ôω = 0.893

Synthetic: ô = −8.227 ôc = 0.353 ôτδ = 0.457 ôω = 0.952.

The two sets of estimates are very close in the sense that the fitted equations are close. The estimates of
mδj

(ψ), the median absolute deviations, m̂δj
(ψ), of the residuals, are

Delay : 1 ms 5 ms 10 ms 50 ms 100 ms

Live: 0.211 0.312 0.372 0.406 0.484

Synthetic: 0.169 0.322 0.356 0.380 0.457

Again, the two sets of estimates are close.

It is important to consider whether the added variable c is contributing in a significant way to the variability
in logit2(uijk), and does not depend fully on the single link NZIX. We used the partial standardized residual
plot in Figure 6 to explore this. The standardized residuals of regressing the logit utilization, logit2(u),
on the predictor variables except log2(c), are graphed against the standardized residuals from regressing
log2(c) on the same variables. The partial regressions are fitted using the final bisquare weights from the
full model fit, and the standardization is a division of the residuals by the estimates m̂δj

(ψ). Figure 6 shows
that log2(c) has explanatory power for each link separately and not just across links. We can also see from
the plot that there is a remaining small link effect, but a minor one. This is also demonstrated in Figure 7, the
same plot as in Figure 5, but for the enlarged model; the horizontal scales on the two plots have been made
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the same to facilitate comparison. The major link effect is now no longer present in the enlarged model. The
result is the same for the same visual display for the synthetic data.

11.7.8 Alternative Forms of the Best-Effort Bandwidth Formula

The Best-Effort Delay Formula of the Best-Effort Delay Model in Equation 5 is

logit2(uijk) = o+ oc log2(ci) + oτδ log2(τiδj) + oω(− log2(− log2(ωk))). (6)

Since τ = cγb, the formula can be rewritten as

logit2(u) = o+ (oc + oτδ) log2(c) + oτδ log2(γbδ) + oω(− log2(− log2(ω))). (7)

In this form we see the action of the amount of multiplexing of connections as measured by c, and the end-
to-end connection speed as measured by γb. An increase in either results in an increase in the utilization of
a link.

11.7.9 Modeling the Error Distribution

As we have discussed, our study of the residuals from the fit of the Best-Effort Delay Model showed that
the scale of the residual error distribution increases with the delay. The study also showed that log2(mδ) is
linearly related to log2(δ). From the least squares estimates for the live data, the estimate of the intercept of
the regression line is −0.481, the estimate of the linear coefficient of the line is 0.166, and the estimate of
the standard error is 0.189. (Results are similar for the synthetic data.)

We also found that when we normalized the residuals by the estimates m̂δj
(ψ), the resulting distribution of

values is very well approximated by a constant times a t-distribution with 15 degrees of freedom. Because
the normalized residuals have a median absolute deviation of 1 and the t15 has a median absolute deviation
of 0.691, the constant is 0.691−1. We will use this modeling of the error distribution for the bandwidth
prediction in Section 11.8.

11.8 Bandwidth Estimation

The Best-Effort Delay Model in Equation 5 can be used to estimate the bandwidth required to meet QoS
criteria on delay for best-effort Internet traffic. We describe here a conservative procedure in the sense that
the estimated bandwidth will be unlikely to be too small. In doing this we will use the coefficient estimates
from the live delay data.

First, we estimate the expected logit utilization, ` = logit2(u) by

ˆ̀= −8.933 + 0.420 log2(c) + 0.444 log2(τδ) + 0.893(− log2(− log2(ω))).

On the utilization scale this is

û =
2

ˆ̀

1 + 2ˆ̀
.

Next we compute a predicted median absolute deviation from the above linear regression:

m̂δ(ψ) = 2−0.481+0.166 log2 δ.
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Figure 6: A partial residual plot for the explanatory variable log2(c) for the Best-Effort Delay Model given
each of the 6 Internet links.
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Figure 7: Dotplot of link median residuals for the Best-Effort Delay Model.

Let t15(p) be the quantile of probability p of a t distribution with 15 degrees of freedom. Then the lower
limit of a 100(1 − p)% tolerance interval for ` is

ˆ̀(p) = ˆ̀− m̂δ(ψ)t15(p)/0.691.

For p = 0.05, t15(p) = 1.75, so the lower 95% limit is

ˆ̀(0.05) = ˆ̀− 2.53m̂δ(ψ).

The lower 95% limit on the utilization scale is

û(0.05) =
2

ˆ̀(0.05)

1 + 2ˆ̀(0.05)
.

This process is illustrated in Figure 8. For the figure, γb was taken to be 214 bits/sec/connection. On each
panel, the values of τ and ω are fixed to the values shown in the strip labels at the tops of the panels, and û
and û(0.05) are both graphed against log2(δ) for δ varying from 0.001 sec to 0.1 sec.

11.9 Other Work on Bandwidth Estimation and Comparison with the Results Here

Bandwidth estimation has received much attention in the literature. The work focuses on queueing because
the issue driving estimation is queueing. Some work is fundamentally empirical in nature in that it uses live
streams as inputs to queueing simulations or synthetic streams from models that have been built with live
streams, although theory can be invoked as well. Other work is fundamentally theoretical in nature in that
the goal is to derive mathematically properties of queues, although live data are sometimes used to provide
values of parameters so that numerical results can be calculated. Most of this work uses derivations of the
delay exceedance probability as a function of an input source to derive the required bandwidth for a given
QoS requirement. The delay exceedance probability is equivalent to the our delay probability, where the
buffer size is related to the delay by a simple multiplication of the link bandwidth. Since exact calculations
of the delay probability are only feasible in special cases, these methods seek an approximate analysis, for
example, using asymptotic methods, stochastic bounds, or in some cases, simulations. There has been by
far much more theoretical work than empirical.
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Figure 8: The QoS utilization from the Best-Effort Delay Model is graphed against log delay given the
bit rate and the delay probability. The bit connection rate γb is taken to be 214 bits/sec/connection. The
upper curve on each panel estimates the expected values and the lower curve is the minimum values of 95%
tolerance intervals.
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The attention to the statistical properties of the traffic stream, which have an immense impact on the queue-
ing, receives attention to varying degrees. Those who carry out empirical studies with live streams do so
as a guarantee of recreating the properties. Those who carry out studies with synthetic traffic from models
must argue for the validity of the models. Much of the theoretical work takes the form of assuming certain
stream properties and then, deriving the consequences, so the problem is solved for any traffic that might
have these properties. Sometime, though, the problem is minimized by deriving asymptotic results under
general conditions.

11.9.1 Empirical Study

Our study here falls in the empirical category but with substantial guidance from theory. To estimate ex-
ceedance probabilities, we run simulations of an infinite buffer, FIFO queue with fixed utilization using live
packet streams or synthetic streams from the FSD model as the input source.

The tradition for using live Internet streams in a queueing simulation began early in the study of Internet
traffic. In a very important study it was shown that long-range dependent traffic results in much greater
queue-length distributions (Erramilli, Narayan, and Willinger 1996) than Poisson traffic. This was an im-
portant result because it showed that the long-range dependence of the traffic would have a large impact on
Internet engineering. In other studies, queueing simulations of both live and altered live traffic are used to
study the effect of dependence properties and multiplexing on performance using the average queue length
as the performance metric (Erramilli, Narayan, Neidbardt, and Saniee 2000; Cao, Cleveland, Lin, and Sun
2001; Erramilli, Narayan, Neidbardt, and Saniee 2000).

In (Mandjes and Boots 2004), queueing simulations of multiplexed on-off sources are used to study the
influence of on and off time distributions on the shape of the loss curve and on performance. To improve the
accuracy of the delay probabilities based on simulations, techniques such as importance sampling are also
considered (Boots and Mandjes 2001).

One study (Fraleigh, Tobagi, and Diot 2003) first uses live streams, Internet backbone traffic, to validate a
traffic model: an extension of Fractional Brownian Motion (FBM), a two-scale FBM process. They do not
model the packet process but rather bit rates as a continuous function. Then they derive approximations of
the delay exceedance probability from the model, which serves as the basis for their bandwidth estimation.
Parameters in the two-scale FBM model that appear in the formula are related to the bitrate τ using the
data. This is similar to our process here where we relate the stream coefficients to c and τ . They also
used queueing simulations to determine delay exceedance probabilities as a method of validation. We will
compare their results and ours at the end of this section.

11.9.2 Mathematical Theory: Effective Bandwidth

A very large number of publications have been written in an area of bandwidth estimation that is referred
to as “effective bandwidth”. The effective bandwidth of an input source provides a measure of its resource
usage for a given QoS requirement, which should lie somewhere between the mean rate and peak rate.
Let A(t) be the total workload (e.g., bytes) generated by a source in the interval [0, t], the mathematical
definition of the effective bandwidth of the source (Kelly 1996) is

α(s, t) =
1

st
log E[esA(t)] 0 < s, t <∞, (8)
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for some space parameter s and time parameter t. For the purpose of bandwidth estimation, the appropriate
choice of parameters depends on the traffic characteristics of the source, the QoS requirements, as well as
the properties of the traffic with which the source is multiplexed. In the following we shall discuss the
effective bandwidth approach to bandwidth estimation based on approximating the delay probability in the
asymptotic regime of many sources.

Consider the delay exceedance probability for a First In First Out (FIFO) queue on a link with constant bit
rate. In the asymptotic regime of many sources, we are concerned with how the delay probability decays
as the size of the system increases. Suppose there are n sources and the traffic generated by the n sources
are identical, independent and stationary. The number of sources, n, grows large and at the same time
the resources such as the link bandwidth β and buffer sizes scale proportionally so that the delay δ stays
constant. Let β = nβ0 for some β0, and let Qn be the queueing delay. Under very general conditions, it
can be shown that (Botvich and Duffield 1995; Courcoubetis and Weber 1996; Simonian and Guibert 1995;
Likhanov and Mazumdar 1998; Mandjes and Kim 2001)

lim
n→∞

−n−1 log P(Qn > δ) = I(δ, β0), (9)

where
I(δ, β0) = inf

t>0
sup

s
(sβ0(δ + t) − stα(s, t)) , (10)

and is sometimes referred to as the loss curve in the literature. Let (s∗, t∗) be an extremizing pair in Equa-
tion (10), then α(s∗, t∗) is the effective bandwidth for the single source as defined in Equation (8), and
nα(s∗, t∗) is the effective bandwidth for the n sources. For a QoS requirement of a delay δ and a delay
probability w, approximating the delay probability P(Qn > δ) using exp(−nI(δ, β0)) (Equation 9), the
bandwidth required for the n sources can be found by solving the following equation for β

s∗β(δ + t∗) − s∗t∗nα(s∗, t∗) = − logw. (11)

This gives

β =
s∗t∗

s∗(δ + t∗)
nα(s∗, t∗) −

logw

s∗(δ + t∗)
, (12)

which is the effective bandwidth solution to the bandwidth estimation problem. If the delay δ → ∞, then
the extremizing value of t∗ approaches to ∞, and the bandwidth in Equation (12) reduces to

n lim
t∗→∞

α(s∗, t∗),

and we recover the classical effective bandwidth definition of a single source limt∗→∞ α(s∗, t∗) for the
large buffer asymptotic model (Elwalid and Mitra 1993; Guerin, Ahmadi, and Naghshineh 1991; Kesidis,
Walrand, and Chang 1993; Chang and Thomas 1995). If the delay δ → 0, then the extremizing pair t∗ → 0
and s∗t∗ → s̃ for some s̃, the bandwidth in Equation (12) reduces to

n lim
t∗→∞

α(s̃/t∗, t∗) −
logw
s̃

,

and we recover the effective bandwidth definition limt∗→∞ α(s̃/t∗, t∗) for the buffer-less model (Hui 1988).

As we can see, the effective bandwidth solution requires the evaluation of the loss curve I(δ, β0) (Equa-
tion 10). However, explicit form of the loss curve is generally not available. One approach is to derive ap-
proximations of the loss curve under buffer asymptotic models, i.e., large buffer asymptotic model (δ → ∞)
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or buffer-less model (δ → 0), for some classes of input source arrivals. For example, if the source arrival
process is Markovian, then for some η > 0 and ν (Botvich and Duffield 1995)

lim
δ→∞

I(δ, β0) − ηδ = ν.

If the source arrival is Fractional Brownian Motion with Hurst parameter H , then for some ν > 0 (Duffield
1996)

lim
δ→∞

I(δ, β0)/δ
2−2H = ν.

For on-off fluid arrival process, it is shown that as δ → 0, for some constants η(β0) and ν(β0) (Mandjes and
Kim 2001),

I(δ, β0) ∼ η(β0) + ν(β0)
√
δ +O(δ),

and as δ → ∞, for some constant θ(β0) (Mandjes and Boots 2002),

I(δ, β0) ∼ θ(β0)v(δ),

where v(δ) = − log P(Residual On period > δ). However, it is found that bandwidth estimation based on
buffer asymptotic models suffer practical problems. For the large buffer asymptotic model, the estimated
bandwidth could be overly conservative or optimistic due to the fact that it does not take into account the
statistical multiplexing gain (Choudhury, Lucantoni, and Whitt 1994; Knightly and Shroff 1999). For the
buffer-less model, there is a significant utilization penalty in the estimated bandwidth (Knightly and Shroff
1999) since results indicate that there is a significant gain even with a small buffer (Mandjes and Kim 2001).

Another approach proposed by (Courcoubetis, Siris, and Stamoulis 1999; Courcoubetis and Siris 2001) is
to numerically evaluate the loss curve I(δ, β0). First, they evaluate the effective bandwidth function α(s, t)
(Equation 8) empirically based on measurements of traffic byte counts in fixed size intervals, and then
they obtain the loss curve (Equation 10) using numeric optimizing procedures with respect to the space
parameter s and the time parameter t. As examples, they applied this approach to estimate bandwidth where
the input source is a Bellcore Ethernet WAN streams or streams of incoming IP traffic over the University of
Crete’s wide area link. Their empirical approach is model free in the sense that it does not require a traffic
model for the input source and all evaluations are based on traffic measurements. However, their approach
is computational intensive, not only because the effective bandwidth function α(s, t) has to be evaluated
for all time parameters t, but also because the minimization with respect to t is non-convex (unlike the
maximization in the space parameter s) and thus difficult to perform numerically (Gibbens and Teh 1999;
Kontovasilis, Wittevrongel, Bruneel, Houdt, and Blondia 2002).

In the effective bandwidth approach, one typically approximates the buffer exceedance probability based on
its logarithmic asymptote. For example, in the asymptotic regime of many sources, using Equation (9), one
can approximate

P(Qn > δ) ≈ exp(−nI(δ, β0)). (13)

An improved approximation can be found by incorporating a pre-factor, i.e.

P(Qn > δ) ≈ K(n, δ, β0) exp(−nI(δ, β0)).

Using the Bahadur-Rao theorem, such approximation has been obtained for the delay exceedance probability
in the infinite buffer case as well as the cell loss ratio in the finite buffer case that has the same logarithmic
asymptote but a different pre-factor (Likhanov and Mazumdar 1998).
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11.9.3 Theory: Other Service Disciplines

Some authors have investigated service disciplines other than FIFO such as general processor sharing
(li Zhang, Towsley, and Kurose 1994) and priority queue (Berger and Whitt 1998). Although TCP is the
most dominant protocol in today’s Internet, we do not consider the effect of the TCP feedback control mech-
anism since the link we sought for estimating a bandwidth is not a bottleneck link. To account for the TCP
feedback control, other authors have studied characteristics of bandwidth sharing for elastic traffic and in-
vestigated the bandwidth estimation problem for such traffic (de Veciana, Lee, and Konstantopoulos 2001;
Fredj, Bonald, Proutiere, Regnie, and Roberts 2001). Again other authors have considered regulated input
traffic such as those from a leaky bucket (Elwalid, Mitra, and Wentworth 1995; Presti, Zhang, Kurose, and
Towsley 1999; Kesidis and Konstantopoulos 2000; Cheng-Shang Chang and Song 2001).

11.9.4 Theory: Direct Approximations of the Delay Probability

Besides approximating the delay exceedance probability using the effective bandwidth approach, some au-
thors have considered direct approximations for some special classes of input traffic models. For example,
for a Markov modulated fluid source, the delay probability can be more accurately expressed as a single ex-
ponential with a prefactor K determined from the loss probability in a buffer-less multiplexer as estimated
by Chernoff’s theorem (Elwalid, Heyman, Lakshman, Mitra, and Weiss 1995). For an aggregate Markov
modulated fluid source, the delay probabilities can be approximated by a sum of exponentials (Shroff and
Schwartz 1998). For a Gaussian process, a tight lower bound of the delay probability can be obtained using
maximum-variance based approaches (Norros 1994; Knightly 1997; Kim and Shroff 1998; Fraleigh, Tobagi,
and Diot 2003). These expressions can be used in place of Equation (13) to derive the required bandwidth for
a QoS requirement. Readers are referred to (Knightly and Shroff 1999) for a nice overview and comparison
of these approaches as well as the aforementioned effective bandwidth approach for bandwidth estimation.

11.9.5 Theory: Queueing Distributions

We now discuss implications of our stream coefficient delay formula and Best-Effort Delay Formula and
its relation to some previous work. The stream coefficient delay model in Equation 3 implies that for each
stream i,

w ≈ P(Qi > δ) ≈ exp

(

− log 2 · 2
µi
ow

(

u

1 − u

)

−
1

ow

δ
oδ
ow

)

for stream coefficient µi and regression coefficients ow, oδ. This suggests the tail distribution of queueing
delay is Weibull with shape parameter oδo

−1
w . The Weibull form is consistent with the FBM traffic model

(and also the two-scale FBM model), but there the shape parameter is 2 − 2H . Notice that oδo
−1
w from

our analysis is 0.52 for the real data and 0.42 for the synthetic data which is quite different from the shape
parameter computed from 2−2H = 0.18. If the bitrate per connection γb is a fixed constant, the Best-Effort
Delay Formula in Equation 5 implies that for some constant o′

w ≈ P(Qi > δ) ≈ exp

(

− log 2 · 2
o′

ow τ
oc+oτδ

ow
i

(

u

1 − u

)

−
1

ow

δ
oδ
ow

)

.

If oc + oτδ = ow and the traffic bitrate τi is a multiple of τ , i.e. τi = niτ , then the above approximation is
consistent with the effective bandwidth result with many sources asymptotics (Equation 9). In our empirical
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analysis, we have found oτδ + oc and ow to be quite close with the ratio (oτδ + oc)o

−1
w being 0.97 for real

data and 0.85 for synthetic data. One of the reasons that this ratio is not 1 is possibly due to the fact that
(Equation 9) is an asymptotic formula.

11.9.6 Comparison of The Results Presented Here with Other Work

The work presented in this article has resulted in a simple formula for bandwidth estimation. At the same
time, validation has been extensive, permeating all areas of the work. Validation is carried out in two ways:
empirically and theoretically.

The large number of papers in the area of effective bandwidth and other theoretical work cited above have
yielded much insight. The work has posited traffic stream models and investigated the resulting mathemat-
ical properties. However, for best-effort Internet traffic, there has not been extensive study to determine
whether some posited model accurately describes the stream statistical properties. Nor has there been exten-
sive empirical work in the form of extensive empirical queueing simulations to determine whether queueing
results for best-effort traffic fit the theory. Consequently, the simple Best-Effort Delay Formula, not readily
derivable without a hint of the final results, was not uncovered.

The interesting paper cited above using the two-scale FBM model surely took great pains to validate the
model (Fraleigh, Tobagi, and Diot 2003). One problem with this approach, modeling traffic bit flow as a
fluid rather than the packet process as it appears on the link, is that the Gaussian assumption does not take
hold until the level of aggregation is quite high. Consequently, the FBM model is not a good approximation
until the traffic rate is 50 megabits/sec and above. So their bandwidth estimation model is not a validated one
below 50 megabits/sec. By contrast, our Best-Effort Delay Model is valid to as low as 1 megabit/sec. But
the ensuing methods used in (Fraleigh, Tobagi, and Diot 2003) to find the QoS bandwidth require a series of
approximations and a worst-case empirical method in the estimation of parameters. There appears to have
been little checking of these approximations. The bandwidth results appear to us to be inaccurate, possibly
arising from some of the approximations. First, as the bit rate increases up to 1 gigabit/sec, the utilization
appears to stabilize at values less than 1, substantially so in some cases. As our theoretical discusses of rate
gains and multiplexing gains demonstrates, the utilization must increases to 1 as the bitrate increases. This
is the case for our Best-Effort Delay Model. For example, the utilization for a delay of 10 ms, a probability
of 0.01, and a bit rate of 1 gigabit/sec, is 90% from Figure 8 of (Fraleigh, Tobagi, and Diot 2003) but is
98% for our model. In addition, the model in (Fraleigh, Tobagi, and Diot 2003) works simply with the bit
rate rather than decomposing into the number of active connections times the bit rate per connection and
using two variables, as is done in the Best-Effort Delay Model here. As we have demonstrated, theoretically
and empirically, the bit rate is not sufficient to account for the utilization since a fast network and one with
a high traffic connection load must be distinguished.

11.10 Results and Discussion

11.10.1 Problem Formulation

Suppose the packet stream — packet arrival times and sizes — arriving for transmission on an Internet link
is best-effort traffic with bit rate τ bits/sec and number of simultaneous active connections, c. Suppose the
link input buffer is large enough that packet loss is negligible. Our goal is to estimate the quality-of-service
(QoS) bandwidth β in bits/sec, or equivalently, the QoS utilization u = τ/β, that satisfies QoS criteria for
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the packet queueing delay in the link input buffer. The criteria are a delay, δ sec, and the probability, ω, that
the delay for a packet exceeds δ.

11.10.2 Other Work on the Problem

There is a wide literature on the bandwidth estimation problem. Much of it is theoretical — mathematical
results that derive properties of queueing systems. A smaller literature is empirical in nature, based on
simulations with packet stream inputs from measurements on live links or from models for traffic. The
classical Erlang Delay Formula provides a simple formula that can be used for estimation of traffic streams
that in theory have Poisson arrivals and i.i.d. exponential sizes. Best-effort traffic is much more complex, it
is nonlinear and long-range dependent, and there has been to date no simple, validated formula for it.

11.10.3 Principal Result: The Best-Effort Delay Model

The principal result of this paper is a statistical model that provides a simple, validated formula for the
estimation of bandwidth for best-effort traffic in the same way that the Erlang Delay Formula does for the
Poisson-exponential case. The model has been validated through extensive empirical study and through
consistency with certain theoretical properties of queueing.

The model consists of the Best-Effort Delay Formula plus random variation:

logit2(u) = o+ oc log2(c) + oτδ log2(τδ) + oω(− log2(− log2(ω))) + ψ.

ψ is a random error variable with mean 0 and median absolute deviation mδ(ψ), which depends on δ; log2

is the log base 2; and logit2(u) = log2(u/(1 − u)). The distribution of 0.691ψ/mδ(ψ) is a t-distribution
with 15 degrees of freedom. Estimates of the coefficients of the model are

ô = −8.933 ôc = 0.420 ôτδ = 0.444 ôω = 0.893.

mδ(ψ) is modeled as a function of δ: log2(mδ(ψ)) is a linear function of log2(δ) plus random variation.
The estimate of the intercept of the line is –0.481, the estimate of the linear coefficient of the line is 0.166,
and the estimate of the standard error is 0.189. The bit rate τ is equal to cγb where γb is the connection bit
rate in bits/sec/connection. So the Best-Effort Delay Formula can also be written as

logit2(u) = o+ (oc + oτδ) log2(c) + oτδ log2(γbδ) + oω(− log2(− log2(ω))).

In this form we see the action of the amount of multiplexing of connections as measured by c, and the end-
to-end connection speed as measured by γb. An increase in either results in an increase in the utilization of
a link.

The Best-Effort Delay Model is used to estimate the bandwidth required to carry best-effort traffic given δ,
ω, τ , and c. The QoS logit utilization is estimated by

ˆ̀= −8.933 + 0.420 log2(c) + .444 log2(τδ) + 0.893(− log2(− log2(ω))),

so the QoS utilization is estimated by

û =
2

ˆ̀

1 + 2ˆ̀
.
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The corresponding estimated bandwidth is τ/û. For such an estimate there is a 50% chance of being too
large and a 50% chance of being too small. We might however, use a more conservative estimate that
provides a much smaller chance of too little bandwidth. Let

m̂δ(ψ) = 2−0.481+0.166 log2(δ)

be the estimate of m(δ). Let t15(p) be the lower 100p% percentage point of a t-distribution with 15 degrees
of freedom, where p is small, say 0.05. Let

ˆ̀(p) = ˆ̀− m̂(δ)t15(p)/0.691

Then

û(p) =
2

ˆ̀(p)

1 + 2ˆ̀(p)
,

is a conservative utilization estimate, the lower limit of a 100p% tolerance interval for the QoS utilization.
The corresponding estimated bandwidth is τ/û(p).

11.10.4 Methods

The Best-Effort Delay Model was built, in part, from queueing theory. Certain predictor variables were
suggested by the Erlang Delay Formula. Theory prescribes certain behavior as τ , c, or γb increase, resulting
in rate gains, multiplexing gains, or fast-forward invariance, and the model was constructed to reproduce the
behavior.

The Best-Effort Delay Model was built, in part, from results of queueing simulations with traffic stream
inputs of two types, live and synthetic. The live streams are measurements of packet arrivals and sizes for
349 intervals, 90 sec or 5 min in duration, from 6 Internet links. The synthetic streams are arrivals and
sizes generated by recently developed FSD time series models for the arrivals and sizes of best-effort traffic.
Each of the live streams was fitted by two FSD models, one for the inter-arrivals and one for the sizes, and
a synthetic stream of 5 min was generated by the models. The generated inter-arrivals are independent of
the generated sizes, which is what we found in the live data. The result is 349 synthetic streams that match
the statistical properties collectively of the live streams. For each live or synthetic stream, we carried out
25 runs, each with a number of simulations. For each run we picked a delay δ and a delay probability ω;
simulations were carried out to find the QoS bandwidth β, the bandwidth that results in delay probability
ω for δ. This also yields a QoS utilization u = τ/β. We used 5 delays — 0.001 sec, 0.005 sec, 0.010
sec, 0.050 sec, 0.100 sec — and 5 delay probabilities — 0.001, 0.005, 0.01, 0.02, and 0.05 — employing
all 25 combinations of the two delay criteria. The queueing simulation results in delay data: values of five
variables — QoS utilization u, delay δ, delay probability ω, the mean number of active connections of the
traffic c, and the traffic bit rate τ . The delay data were used in the model building.

11.10.5 Validity and Applicability

Extensive data exploration with visualization tools, some shown here, demonstrate that the Best-Effort Delay
Model fits the simulation delay data. This, of course, is necessary for the model to be valid. In addition,
validity is supported by the model reproducing the theoretical queueing properties as just discussed.
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The validity of the Best-Effort Delay Model depends on the validity of the traffic streams used as inputs
to the queueing simulation; that is, the packet streams must reproduce the statistical properties of best-
effort streams. Of course, the live streams of the study do so because they are best-effort traffic. Extensive
validation has shown that the FSD models, used to generate the packet streams here, provide excellent fits
to best-effort packet streams when c is above about 64 connections, which for a link where γb is about 214

bits/sec/connection means τ is above about 1 megabit/sec. For this reason, only traffic streams with τ greater
than this rate are used in the study, and the Best-Effort Delay Model is valid above this rate.

The results are only valid for links with a large enough buffer that the packet loss is negligible. We have
used open-loop study, which does not provide for the TCP feedback that occurs when loss is significant.
This restriction also holds for the other work on bandwidth estimation cited here.

There is also a practical restriction on applicability. We have taken the range of our study to include traffic
bit rates as low as about 1 megabit/sec. We have done this simply because we can do so and achieve valid
results. But even for the least stringent of our delay criteria, δ = 0.1 sec delay and ω = 0.05 delay probability,
the utilizations are low for rates in the range of 1 megabit/sec to 5 megabits/sec. This might well be judged
to be too small a utilization to be practical; if so, it might mean that the what must be sacrificed is the
negligible packet loss, which means that a QoS study at the very low traffic bit rates needs to take account
of TCP feedback.

One outcome of the dependence of the bandwidth estimation on the traffic statistics is that our solution for
best-effort traffic would not apply to other forms of Internet traffic that do not share the best-effort statistical
properties. One example is voice traffic.

Finally, the Best-Effort Delay Model provides an estimation of bandwidth in isolation without considering
other network factors. A major factor in network design is link failures. Redundancy needs to be built into
the system. So an estimate of bandwidth from the model for a link based on the normal link traffic may be
reduced to provide the redundancy. But the model still plays a role because the bandwidth must be chosen
based on link traffic, but now the traffic in the event of a failure elsewhere.   
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